February  2016, 10(1): 51-86. doi: 10.3934/ipi.2016.10.51

The topological gradient method for semi-linear problems and application to edge detection and noise removal

1. 

Univ. Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, 06100 Nice, France, France

Received  December 2014 Revised  July 2015 Published  February 2016

The goal of this paper is to apply the topological gradient method to edge detection and noise removal for images degraded by various noises and blurs. First applied to edge detection for images degraded by a Gaussian noise, we propose here to extend the method to blurred images contaminated either by a multiplicative noise of gamma law or to blurred Poissonian images. We compute, both for perforated and cracked domains, the topological gradient for each noise model. Then we present an edge detection/restoration algorithm based on this notion and we apply it to the two degradation models previously described. We compare our method with other classical variational approaches such that the Mumford-Shah and TV restoration models and with the classical Canny edge detector. Some experimental results showing the efficiency, the robustness and the rapidity of the method are presented.
Citation: Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems & Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51
References:
[1]

L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Gamma-convergence,, Communications on Pure and Applied Mathematics, 43 (1990), 999. doi: 10.1002/cpa.3160430805.

[2]

S. Amstutz, Topological sensitivity analysis for some nonlinear PDE system,, J. Math. Pures Appl., 85 (2006), 540. doi: 10.1016/j.matpur.2005.10.008.

[3]

S. Amstutz, The topological asymptotic for the Navier-Stokes equations,, ESAIM: Control, 11 (2005), 401. doi: 10.1051/cocv:2005012.

[4]

S. Amstutz and J. Fehrenbach, Edge detection using topological gradients: A scale-space approach,, J. Math. Imaging Vision, 52 (2015), 249. doi: 10.1007/s10851-015-0558-z.

[5]

S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the toplogical gradient method,, Control and Cybernetics, 34 (2005), 81.

[6]

G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise,, SIAM Journal of Applied Mathematics, 68 (2008), 925. doi: 10.1137/060671814.

[7]

G. Aubert and A. Drogoul, Topological gradient for a fourth order operator used in image analysis,, ESAIM Control Optim. Calc. Var., 21 (2015), 1120. doi: 10.1051/cocv/2014061.

[8]

G. Aubert and A. Drogoul, Topological gradient for fourth order pde and application to the detection of fine structures in 2d images,, C. R. Math. Acad. Sci. Paris, 352 (2014), 609. doi: 10.1016/j.crma.2014.06.005.

[9]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations,, Second edition, (2006).

[10]

D. Auroux, From restoration by topological gradient to medical image segmentation via an asymptotic expansion,, Math. Comput. Model., 49 (2009), 2191. doi: 10.1016/j.mcm.2008.07.002.

[11]

D. Auroux and M. Masmoudi, A one-shot inpainting algorithm based on the topological asymptotic analysis,, Computational & Applied Mathematics, 25 (2006), 251. doi: 10.1590/S0101-82052006000200008.

[12]

D. Auroux and M. Masmoudi, Image processing by topological asymptotic expansion,, Journal of Mathematical Imaging and Vision, 33 (2009), 122. doi: 10.1007/s10851-008-0121-2.

[13]

D. Auroux, M. Masmoudi and L. Jaafar Belaid, Image restoration and classification by topological asymptotic expansion,, Variational Formulations in Mechanics: Theory and Applications (eds. E. Taroco, (2007), 23.

[14]

H. Ayasso and A. Mohammad-Djafari, Joint image restorationand segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation,, IEEE Trans. Image Process, 19 (2010), 2265. doi: 10.1109/TIP.2010.2047902.

[15]

L. J. Belaid, M. Jaoua, M. Masmoudi and L. Siala, Image restoration and edge detection by topological asymptotic expansion,, C. R. Acad. Sci. Paris, 342 (2006), 313. doi: 10.1016/j.crma.2005.12.009.

[16]

L. J. Belaid, M. Jaoua, M. Masmoudi and L. Siala, Application of the topological gradient to image restoration and edge detection,, Engineering Analysis with Boundary Elements, 32 (2008), 891.

[17]

S. Ben Hadj, L. Blanc Féraud and G. Aubert, Space Variant Blind Image Restoration,, SIAM Journal on Imaging Sciences, 7 (2014), 2196. doi: 10.1137/130945776.

[18]

S. Bonettini, R. Zanella and L. Zanni, A scaled gradient projection method for constrained image deblurring,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/1/015002.

[19]

T. Chan and J. Shen, Image Processing And Analysis: Variational, PDE, Wavelet, and Stochastic Methods,, SIAM, (2005). doi: 10.1137/1.9780898717877.

[20]

N. Dey, L. Blanc-Féraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin and J. Zerubia, 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization,, Rapport de recherche RR-5272, (2004).

[21]

A. Drogoul, Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in 2D imaging,, SIAM J. Imaging Sci., 7 (2014), 2700. doi: 10.1137/140967374.

[22]

A. Drogoul, Topological Gradient Method Applied to the Detection of Edges and Fine Structures in Imaging,, Ph.D Thesis, (2014).

[23]

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (1984), 721. doi: 10.1109/TPAMI.1984.4767596.

[24]

T. Hebert and R. Leahy, A generalized EM algorithm for 3D Bayesian recontruction from Poisson data using Gibbs prior,, IEEE Trans. Medical imaging, 8 (1989), 194.

[25]

F. M. Henderson, A. J. Lewis and R. A. Ryerson, eds., Principles and Applications of Imaging Radar. Manual of Remote Sensing,, 3rd edition, (1998). doi: 10.1029/99EO00047.

[26]

M. Hintermüller, Fast-set based algorithms using shape and topological sensitivity information,, Control and Cybernetics, 34 (2005), 305.

[27]

M. Iguernane, S. A. Nazarov, J.-R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations,, Applied Mathematics and Computer Science, 19 (2009), 191. doi: 10.2478/v10006-009-0016-4.

[28]

K. Krissian, R. Kikinis, C.-F. Westin and K. G. Vosburgh, Speckle-constrained filtering of ultrasound images,, in Computer Vision and Pattern Recognition, (2005), 547. doi: 10.1109/CVPR.2005.331.

[29]

S. Larnier and J. Fehrenbach, Edge detection and image restoration with anisotropic topological gradient,, in Proceedings ICASSP, (2010), 1362. doi: 10.1109/ICASSP.2010.5495448.

[30]

S. Larnier, J. Fehrenbach and M. Masmoudi, The topological gradient method: From optimal design to image processing,, Milan Journal of Mathematics, 80 (2012), 411. doi: 10.1007/s00032-012-0196-5.

[31]

I. Larrabide, A. A. Novotny, R. A. Feijo and E. Taroco, A medical image enhancement algorithms based on topological derivative and anisotropic diffusion,, in Proceedings of the XXVI Iberian Latin-American Congess on Computational Methods in Engineering, (2005).

[32]

S. Mallat, A Wavelet Tour of Signal Processing,, Academic Press, (1998).

[33]

M. Masmoudi, The topological asymptotic,, in Computational Methods for Control Applications, (2001).

[34]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[35]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems,, Applied Mathematical Sciences, (2001). doi: 10.1007/978-1-4757-4393-7.

[36]

J. Pawley, Handbook of Biological Confocal Microscopy,, Springer, (2006).

[37]

A. Sawatzky, D. Tenbrinck, X. Jiang and M. Burger, A variational framework for region-based segmentation incorporating physical noise models,, Journal of Mathematical Imaging and Vision, 47 (2013), 179. doi: 10.1007/s10851-013-0419-6.

[38]

J. Serra, Image Analysis and Mathematical Morphology,, Academic Press, (1984).

[39]

J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization,, SIAM J. Control Optim., 37 (1999), 1251. doi: 10.1137/S0363012997323230.

[40]

M. Tur, K. C. Chin and J. W. Goodman, When is speckle noise multiplicative?,, Applied Optics, 21 (1982), 1157. doi: 10.1364/AO.21.001157.

[41]

M. N. Wernick and J. N. Aarsvold, eds., Emission Tomography: The Fundamental of PET and SPECT,, Elsevier, (2004).

show all references

References:
[1]

L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Gamma-convergence,, Communications on Pure and Applied Mathematics, 43 (1990), 999. doi: 10.1002/cpa.3160430805.

[2]

S. Amstutz, Topological sensitivity analysis for some nonlinear PDE system,, J. Math. Pures Appl., 85 (2006), 540. doi: 10.1016/j.matpur.2005.10.008.

[3]

S. Amstutz, The topological asymptotic for the Navier-Stokes equations,, ESAIM: Control, 11 (2005), 401. doi: 10.1051/cocv:2005012.

[4]

S. Amstutz and J. Fehrenbach, Edge detection using topological gradients: A scale-space approach,, J. Math. Imaging Vision, 52 (2015), 249. doi: 10.1007/s10851-015-0558-z.

[5]

S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the toplogical gradient method,, Control and Cybernetics, 34 (2005), 81.

[6]

G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise,, SIAM Journal of Applied Mathematics, 68 (2008), 925. doi: 10.1137/060671814.

[7]

G. Aubert and A. Drogoul, Topological gradient for a fourth order operator used in image analysis,, ESAIM Control Optim. Calc. Var., 21 (2015), 1120. doi: 10.1051/cocv/2014061.

[8]

G. Aubert and A. Drogoul, Topological gradient for fourth order pde and application to the detection of fine structures in 2d images,, C. R. Math. Acad. Sci. Paris, 352 (2014), 609. doi: 10.1016/j.crma.2014.06.005.

[9]

G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations,, Second edition, (2006).

[10]

D. Auroux, From restoration by topological gradient to medical image segmentation via an asymptotic expansion,, Math. Comput. Model., 49 (2009), 2191. doi: 10.1016/j.mcm.2008.07.002.

[11]

D. Auroux and M. Masmoudi, A one-shot inpainting algorithm based on the topological asymptotic analysis,, Computational & Applied Mathematics, 25 (2006), 251. doi: 10.1590/S0101-82052006000200008.

[12]

D. Auroux and M. Masmoudi, Image processing by topological asymptotic expansion,, Journal of Mathematical Imaging and Vision, 33 (2009), 122. doi: 10.1007/s10851-008-0121-2.

[13]

D. Auroux, M. Masmoudi and L. Jaafar Belaid, Image restoration and classification by topological asymptotic expansion,, Variational Formulations in Mechanics: Theory and Applications (eds. E. Taroco, (2007), 23.

[14]

H. Ayasso and A. Mohammad-Djafari, Joint image restorationand segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation,, IEEE Trans. Image Process, 19 (2010), 2265. doi: 10.1109/TIP.2010.2047902.

[15]

L. J. Belaid, M. Jaoua, M. Masmoudi and L. Siala, Image restoration and edge detection by topological asymptotic expansion,, C. R. Acad. Sci. Paris, 342 (2006), 313. doi: 10.1016/j.crma.2005.12.009.

[16]

L. J. Belaid, M. Jaoua, M. Masmoudi and L. Siala, Application of the topological gradient to image restoration and edge detection,, Engineering Analysis with Boundary Elements, 32 (2008), 891.

[17]

S. Ben Hadj, L. Blanc Féraud and G. Aubert, Space Variant Blind Image Restoration,, SIAM Journal on Imaging Sciences, 7 (2014), 2196. doi: 10.1137/130945776.

[18]

S. Bonettini, R. Zanella and L. Zanni, A scaled gradient projection method for constrained image deblurring,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/1/015002.

[19]

T. Chan and J. Shen, Image Processing And Analysis: Variational, PDE, Wavelet, and Stochastic Methods,, SIAM, (2005). doi: 10.1137/1.9780898717877.

[20]

N. Dey, L. Blanc-Féraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin and J. Zerubia, 3D Microscopy Deconvolution using Richardson-Lucy Algorithm with Total Variation Regularization,, Rapport de recherche RR-5272, (2004).

[21]

A. Drogoul, Numerical analysis of the topological gradient method for fourth order models and applications to the detection of fine structures in 2D imaging,, SIAM J. Imaging Sci., 7 (2014), 2700. doi: 10.1137/140967374.

[22]

A. Drogoul, Topological Gradient Method Applied to the Detection of Edges and Fine Structures in Imaging,, Ph.D Thesis, (2014).

[23]

S. Geman and D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration of images,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 (1984), 721. doi: 10.1109/TPAMI.1984.4767596.

[24]

T. Hebert and R. Leahy, A generalized EM algorithm for 3D Bayesian recontruction from Poisson data using Gibbs prior,, IEEE Trans. Medical imaging, 8 (1989), 194.

[25]

F. M. Henderson, A. J. Lewis and R. A. Ryerson, eds., Principles and Applications of Imaging Radar. Manual of Remote Sensing,, 3rd edition, (1998). doi: 10.1029/99EO00047.

[26]

M. Hintermüller, Fast-set based algorithms using shape and topological sensitivity information,, Control and Cybernetics, 34 (2005), 305.

[27]

M. Iguernane, S. A. Nazarov, J.-R. Roche, J. Sokolowski and K. Szulc, Topological derivatives for semilinear elliptic equations,, Applied Mathematics and Computer Science, 19 (2009), 191. doi: 10.2478/v10006-009-0016-4.

[28]

K. Krissian, R. Kikinis, C.-F. Westin and K. G. Vosburgh, Speckle-constrained filtering of ultrasound images,, in Computer Vision and Pattern Recognition, (2005), 547. doi: 10.1109/CVPR.2005.331.

[29]

S. Larnier and J. Fehrenbach, Edge detection and image restoration with anisotropic topological gradient,, in Proceedings ICASSP, (2010), 1362. doi: 10.1109/ICASSP.2010.5495448.

[30]

S. Larnier, J. Fehrenbach and M. Masmoudi, The topological gradient method: From optimal design to image processing,, Milan Journal of Mathematics, 80 (2012), 411. doi: 10.1007/s00032-012-0196-5.

[31]

I. Larrabide, A. A. Novotny, R. A. Feijo and E. Taroco, A medical image enhancement algorithms based on topological derivative and anisotropic diffusion,, in Proceedings of the XXVI Iberian Latin-American Congess on Computational Methods in Engineering, (2005).

[32]

S. Mallat, A Wavelet Tour of Signal Processing,, Academic Press, (1998).

[33]

M. Masmoudi, The topological asymptotic,, in Computational Methods for Control Applications, (2001).

[34]

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577. doi: 10.1002/cpa.3160420503.

[35]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems,, Applied Mathematical Sciences, (2001). doi: 10.1007/978-1-4757-4393-7.

[36]

J. Pawley, Handbook of Biological Confocal Microscopy,, Springer, (2006).

[37]

A. Sawatzky, D. Tenbrinck, X. Jiang and M. Burger, A variational framework for region-based segmentation incorporating physical noise models,, Journal of Mathematical Imaging and Vision, 47 (2013), 179. doi: 10.1007/s10851-013-0419-6.

[38]

J. Serra, Image Analysis and Mathematical Morphology,, Academic Press, (1984).

[39]

J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization,, SIAM J. Control Optim., 37 (1999), 1251. doi: 10.1137/S0363012997323230.

[40]

M. Tur, K. C. Chin and J. W. Goodman, When is speckle noise multiplicative?,, Applied Optics, 21 (1982), 1157. doi: 10.1364/AO.21.001157.

[41]

M. N. Wernick and J. N. Aarsvold, eds., Emission Tomography: The Fundamental of PET and SPECT,, Elsevier, (2004).

[1]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[2]

Jia Li, Zuowei Shen, Rujie Yin, Xiaoqun Zhang. A reweighted $l^2$ method for image restoration with Poisson and mixed Poisson-Gaussian noise. Inverse Problems & Imaging, 2015, 9 (3) : 875-894. doi: 10.3934/ipi.2015.9.875

[3]

Wenqiang Zhao. Random dynamics of non-autonomous semi-linear degenerate parabolic equations on $\mathbb{R}^N$ driven by an unbounded additive noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2499-2526. doi: 10.3934/dcdsb.2018065

[4]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[5]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[6]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[7]

Út V. Lê. Contraction-Galerkin method for a semi-linear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 141-160. doi: 10.3934/cpaa.2010.9.141

[8]

Bruno Sixou, Tom Hohweiller, Nicolas Ducros. Morozov principle for Kullback-Leibler residual term and Poisson noise. Inverse Problems & Imaging, 2018, 12 (3) : 607-634. doi: 10.3934/ipi.2018026

[9]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[10]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[11]

Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761

[12]

Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure & Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237

[13]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[14]

Guangyue Huang, Wenyi Chen. Uniqueness for the solution of semi-linear elliptic Neumann problems in $\mathbb R^3$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1269-1273. doi: 10.3934/cpaa.2008.7.1269

[15]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[16]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[17]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

[18]

Y. Kabeya, Eiji Yanagida, Shoji Yotsutani. Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems. Communications on Pure & Applied Analysis, 2002, 1 (1) : 85-102. doi: 10.3934/cpaa.2002.1.85

[19]

Houda Mokrani. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1619-1636. doi: 10.3934/cpaa.2009.8.1619

[20]

Jason R. Morris. A Sobolev space approach for global solutions to certain semi-linear heat equations in bounded domains. Conference Publications, 2009, 2009 (Special) : 574-582. doi: 10.3934/proc.2009.2009.574

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]