• Previous Article
    Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves
  • IPI Home
  • This Issue
  • Next Article
    The topological gradient method for semi-linear problems and application to edge detection and noise removal
February  2016, 10(1): 87-102. doi: 10.3934/ipi.2016.10.87

Common midpoint versus common offset acquisition geometry in seismic imaging

1. 

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623, United States

2. 

TIFR Centre for Applicable Mathematics, Post Bag No. 6503, GKVK Post Office, Sharada Nagar, Chikkabommasandra, Bangalore, Karnataka 560065, India

3. 

Department of Mathematics and Statistics, University of Limerick, Castletroy, Co. Limerick, Ireland

4. 

Department of Mathematics, Tufts University, Medford, MA 02155, United States

Received  December 2014 Revised  June 2015 Published  February 2016

We compare and contrast the qualitative nature of backprojected images obtained in seismic imaging when common offset data are used versus when common midpoint data are used. Our results show that the image obtained using common midpoint data contains artifacts which are not present with common offset data. Although there are situations where one would still want to use common midpoint data, this result points out a shortcoming that should be kept in mind when interpreting the images.
Citation: Raluca Felea, Venkateswaran P. Krishnan, Clifford J. Nolan, Eric Todd Quinto. Common midpoint versus common offset acquisition geometry in seismic imaging. Inverse Problems & Imaging, 2016, 10 (1) : 87-102. doi: 10.3934/ipi.2016.10.87
References:
[1]

G. Ambartsoumian, R. Felea, V. P. Krishnan, C. Nolan and E. T. Quinto, A class of singular Fourier integral operators in synthetic aperture radar imaging,, J. Funct. Anal., 264 (2013), 246.  doi: 10.1016/j.jfa.2012.10.008.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99.  doi: 10.1063/1.526755.  Google Scholar

[3]

N. Bleistein, J. Cohen and J. J.W. Stockhwell, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,, Interdisciplinary Applied Mathematics, (2001).  doi: 10.1007/978-1-4613-0001-4.  Google Scholar

[4]

M. V. de Hoop, H. Smith, G. Uhlmann and R. D. van der Hilst, Seismic imaging with the generalized Radon transform: A curvelet transform perspective,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/2/025005.  Google Scholar

[5]

M. V. de Hoop, Microlocal analysis of seismic inverse scattering,, in Inside Out: Inverse Problems and Applications, (2003), 219.   Google Scholar

[6]

A. Devaney, Geophysical diffraction tomography,, IEEE Transactions on Geoscience and Remote Sensing, 22 (1984), 3.   Google Scholar

[7]

R. Felea and A. Greenleaf, An FIO calculus for marine seismic imaging: folds and crosscaps,, Communications in Partial Differential Equations, 33 (2008), 45.  doi: 10.1080/03605300701318716.  Google Scholar

[8]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities,, Comm. Partial Differential Equations, 30 (2005), 1717.  doi: 10.1080/03605300500299968.  Google Scholar

[9]

R. Felea, Displacement of artefacts in inverse scattering,, Inverse Problems, 23 (2007), 1519.  doi: 10.1088/0266-5611/23/4/009.  Google Scholar

[10]

R. Felea and A. Greenleaf, Fourier integral operators with open umbrellas and seismic inversion for cusp caustics,, Math. Res. Lett., 17 (2010), 867.  doi: 10.4310/MRL.2010.v17.n5.a6.  Google Scholar

[11]

R. Felea, A. Greenleaf and M. Pramanik, An FIO calculus for marine seismic imaging, II: Sobolev estimates,, Math. Ann., 352 (2012), 293.  doi: 10.1007/s00208-011-0644-5.  Google Scholar

[12]

J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/12/125007.  Google Scholar

[13]

A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms,, Ann. Inst. Fourier (Grenoble), 40 (1990), 443.  doi: 10.5802/aif.1220.  Google Scholar

[14]

A. Greenleaf and G. Uhlmann, Non-local inversion formulas for the X-ray transform,, Duke Math. J., 58 (1989), 205.  doi: 10.1215/S0012-7094-89-05811-0.  Google Scholar

[15]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols,, J. Funct. Anal., 89 (1990), 202.  doi: 10.1016/0022-1236(90)90011-9.  Google Scholar

[16]

A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry,, in Integral Geometry and Tomography (Arcata, (1989), 121.  doi: 10.1090/conm/113/1108649.  Google Scholar

[17]

V. Guillemin, Some Remarks on Integral Geometry,, Technical Report, (1975).   Google Scholar

[18]

V. Guillemin, Cosmology in $(2 + 1)$-dimensions, Cyclic Models, and Deformations of $M_{2,1}$,, Annals of Mathematics Studies, (1989).   Google Scholar

[19]

V. Guillemin and S. Sternberg, Geometric Asymptotics,, Mathematical Surveys, (1977).   Google Scholar

[20]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols,, Duke Math. J., 48 (1981), 251.  doi: 10.1215/S0012-7094-81-04814-6.  Google Scholar

[21]

A. I. Katsevich, Local Tomography for the Limited-Angle Problem,, Journal of mathematical analysis and applications, 213 (1997), 160.  doi: 10.1006/jmaa.1997.5412.  Google Scholar

[22]

V. P. Krishnan and E. T. Quinto, Microlocal aspects of bistatic synthetic aperture radar imaging,, Inverse Problems and Imaging, 5 (2011), 659.  doi: 10.3934/ipi.2011.5.659.  Google Scholar

[23]

A. Malcolm, B. Ursin and M. de Hoop, Seismic imaging and illumination with internal multiples,, Geophysical Journal International, 176 (2009), 847.  doi: 10.1111/j.1365-246X.2008.03992.x.  Google Scholar

[24]

R. B. Melrose and G. A. Uhlmann, Lagrangian intersection and the Cauchy problem,, Comm. Pure Appl. Math., 32 (1979), 483.  doi: 10.1002/cpa.3160320403.  Google Scholar

[25]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the wave equation,, Comm. Partial Differential Equations, 22 (1997), 919.  doi: 10.1080/03605309708821289.  Google Scholar

[26]

C. J. Nolan, Scattering in the presence of fold caustics,, SIAM J. Appl. Math., 61 (2000), 659.  doi: 10.1137/S0036139999356107.  Google Scholar

[27]

C. J. Nolan and M. Cheney, Synthetic aperture inversion,, Inverse Problems, 18 (2002), 221.  doi: 10.1088/0266-5611/18/1/315.  Google Scholar

[28]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging,, J. Fourier Anal. Appl., 10 (2004), 133.  doi: 10.1007/s00041-004-8008-0.  Google Scholar

[29]

E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $\mathbbR^2$ and $\mathbbR^3$,, SIAM J. Math. Anal., 24 (1993), 1215.  doi: 10.1137/0524069.  Google Scholar

[30]

E. T. Quinto, A. Rieder and T. Schuster, Local inversion of the sonar transform regularized by the approximate inverse,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/3/035006.  Google Scholar

[31]

Rakesh, A linearised inverse problem for the wave equation,, Comm. Partial Differential Equations, 13 (1988), 573.  doi: 10.1080/03605308808820553.  Google Scholar

[32]

R. E. Sheriff, Encyclopedic Dictionary of Applied Geophysics,, Society Of Exploration Geophysicists, (2002).  doi: 10.1190/1.9781560802969.  Google Scholar

[33]

P. Stefanov and G. Uhlmann, Is a curved flight path in {SAR} better than a straight one?,, SIAM J. Appl. Math., 73 (2013), 1596.  doi: 10.1137/120882639.  Google Scholar

[34]

C. C. Stolk, Microlocal analysis of a seismic linearized inverse problem,, Wave Motion, 32 (2000), 267.  doi: 10.1016/S0165-2125(00)00043-3.  Google Scholar

[35]

C. C. Stolk and M. V. de Hoop, Microlocal analysis of seismic inverse scattering in anisotropic elastic media,, Comm. Pure Appl. Math., 55 (2002), 261.  doi: 10.1002/cpa.10019.  Google Scholar

[36]

C. C. Stolk and M. V. de Hoop, Seismic inverse scattering in the downward continuation approach,, Wave Motion, 43 (2006), 579.  doi: 10.1016/j.wavemoti.2006.05.003.  Google Scholar

[37]

W. W. Symes, Mathematics of Reflection Seismology,, Technical Report, (1990), 90.   Google Scholar

[38]

A. P. E. ten Kroode, D.-J. Smit and A. R. Verdel, A microlocal analysis of migration,, Wave Motion, 28 (1998), 149.  doi: 10.1016/S0165-2125(98)00004-3.  Google Scholar

[39]

F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators,, Fourier Integral Operators, (1980).   Google Scholar

show all references

References:
[1]

G. Ambartsoumian, R. Felea, V. P. Krishnan, C. Nolan and E. T. Quinto, A class of singular Fourier integral operators in synthetic aperture radar imaging,, J. Funct. Anal., 264 (2013), 246.  doi: 10.1016/j.jfa.2012.10.008.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99.  doi: 10.1063/1.526755.  Google Scholar

[3]

N. Bleistein, J. Cohen and J. J.W. Stockhwell, Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,, Interdisciplinary Applied Mathematics, (2001).  doi: 10.1007/978-1-4613-0001-4.  Google Scholar

[4]

M. V. de Hoop, H. Smith, G. Uhlmann and R. D. van der Hilst, Seismic imaging with the generalized Radon transform: A curvelet transform perspective,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/2/025005.  Google Scholar

[5]

M. V. de Hoop, Microlocal analysis of seismic inverse scattering,, in Inside Out: Inverse Problems and Applications, (2003), 219.   Google Scholar

[6]

A. Devaney, Geophysical diffraction tomography,, IEEE Transactions on Geoscience and Remote Sensing, 22 (1984), 3.   Google Scholar

[7]

R. Felea and A. Greenleaf, An FIO calculus for marine seismic imaging: folds and crosscaps,, Communications in Partial Differential Equations, 33 (2008), 45.  doi: 10.1080/03605300701318716.  Google Scholar

[8]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities,, Comm. Partial Differential Equations, 30 (2005), 1717.  doi: 10.1080/03605300500299968.  Google Scholar

[9]

R. Felea, Displacement of artefacts in inverse scattering,, Inverse Problems, 23 (2007), 1519.  doi: 10.1088/0266-5611/23/4/009.  Google Scholar

[10]

R. Felea and A. Greenleaf, Fourier integral operators with open umbrellas and seismic inversion for cusp caustics,, Math. Res. Lett., 17 (2010), 867.  doi: 10.4310/MRL.2010.v17.n5.a6.  Google Scholar

[11]

R. Felea, A. Greenleaf and M. Pramanik, An FIO calculus for marine seismic imaging, II: Sobolev estimates,, Math. Ann., 352 (2012), 293.  doi: 10.1007/s00208-011-0644-5.  Google Scholar

[12]

J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/12/125007.  Google Scholar

[13]

A. Greenleaf and G. Uhlmann, Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms,, Ann. Inst. Fourier (Grenoble), 40 (1990), 443.  doi: 10.5802/aif.1220.  Google Scholar

[14]

A. Greenleaf and G. Uhlmann, Non-local inversion formulas for the X-ray transform,, Duke Math. J., 58 (1989), 205.  doi: 10.1215/S0012-7094-89-05811-0.  Google Scholar

[15]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols,, J. Funct. Anal., 89 (1990), 202.  doi: 10.1016/0022-1236(90)90011-9.  Google Scholar

[16]

A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry,, in Integral Geometry and Tomography (Arcata, (1989), 121.  doi: 10.1090/conm/113/1108649.  Google Scholar

[17]

V. Guillemin, Some Remarks on Integral Geometry,, Technical Report, (1975).   Google Scholar

[18]

V. Guillemin, Cosmology in $(2 + 1)$-dimensions, Cyclic Models, and Deformations of $M_{2,1}$,, Annals of Mathematics Studies, (1989).   Google Scholar

[19]

V. Guillemin and S. Sternberg, Geometric Asymptotics,, Mathematical Surveys, (1977).   Google Scholar

[20]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols,, Duke Math. J., 48 (1981), 251.  doi: 10.1215/S0012-7094-81-04814-6.  Google Scholar

[21]

A. I. Katsevich, Local Tomography for the Limited-Angle Problem,, Journal of mathematical analysis and applications, 213 (1997), 160.  doi: 10.1006/jmaa.1997.5412.  Google Scholar

[22]

V. P. Krishnan and E. T. Quinto, Microlocal aspects of bistatic synthetic aperture radar imaging,, Inverse Problems and Imaging, 5 (2011), 659.  doi: 10.3934/ipi.2011.5.659.  Google Scholar

[23]

A. Malcolm, B. Ursin and M. de Hoop, Seismic imaging and illumination with internal multiples,, Geophysical Journal International, 176 (2009), 847.  doi: 10.1111/j.1365-246X.2008.03992.x.  Google Scholar

[24]

R. B. Melrose and G. A. Uhlmann, Lagrangian intersection and the Cauchy problem,, Comm. Pure Appl. Math., 32 (1979), 483.  doi: 10.1002/cpa.3160320403.  Google Scholar

[25]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the wave equation,, Comm. Partial Differential Equations, 22 (1997), 919.  doi: 10.1080/03605309708821289.  Google Scholar

[26]

C. J. Nolan, Scattering in the presence of fold caustics,, SIAM J. Appl. Math., 61 (2000), 659.  doi: 10.1137/S0036139999356107.  Google Scholar

[27]

C. J. Nolan and M. Cheney, Synthetic aperture inversion,, Inverse Problems, 18 (2002), 221.  doi: 10.1088/0266-5611/18/1/315.  Google Scholar

[28]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging,, J. Fourier Anal. Appl., 10 (2004), 133.  doi: 10.1007/s00041-004-8008-0.  Google Scholar

[29]

E. T. Quinto, Singularities of the X-ray transform and limited data tomography in $\mathbbR^2$ and $\mathbbR^3$,, SIAM J. Math. Anal., 24 (1993), 1215.  doi: 10.1137/0524069.  Google Scholar

[30]

E. T. Quinto, A. Rieder and T. Schuster, Local inversion of the sonar transform regularized by the approximate inverse,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/3/035006.  Google Scholar

[31]

Rakesh, A linearised inverse problem for the wave equation,, Comm. Partial Differential Equations, 13 (1988), 573.  doi: 10.1080/03605308808820553.  Google Scholar

[32]

R. E. Sheriff, Encyclopedic Dictionary of Applied Geophysics,, Society Of Exploration Geophysicists, (2002).  doi: 10.1190/1.9781560802969.  Google Scholar

[33]

P. Stefanov and G. Uhlmann, Is a curved flight path in {SAR} better than a straight one?,, SIAM J. Appl. Math., 73 (2013), 1596.  doi: 10.1137/120882639.  Google Scholar

[34]

C. C. Stolk, Microlocal analysis of a seismic linearized inverse problem,, Wave Motion, 32 (2000), 267.  doi: 10.1016/S0165-2125(00)00043-3.  Google Scholar

[35]

C. C. Stolk and M. V. de Hoop, Microlocal analysis of seismic inverse scattering in anisotropic elastic media,, Comm. Pure Appl. Math., 55 (2002), 261.  doi: 10.1002/cpa.10019.  Google Scholar

[36]

C. C. Stolk and M. V. de Hoop, Seismic inverse scattering in the downward continuation approach,, Wave Motion, 43 (2006), 579.  doi: 10.1016/j.wavemoti.2006.05.003.  Google Scholar

[37]

W. W. Symes, Mathematics of Reflection Seismology,, Technical Report, (1990), 90.   Google Scholar

[38]

A. P. E. ten Kroode, D.-J. Smit and A. R. Verdel, A microlocal analysis of migration,, Wave Motion, 28 (1998), 149.  doi: 10.1016/S0165-2125(98)00004-3.  Google Scholar

[39]

F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators,, Fourier Integral Operators, (1980).   Google Scholar

[1]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[2]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[3]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[4]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[5]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

[6]

Radjesvarane Alexandre, Lingbing He. Integral estimates for a linear singular operator linked with Boltzmann operators part II: High singularities $1\le\nu<2$. Kinetic & Related Models, 2008, 1 (4) : 491-513. doi: 10.3934/krm.2008.1.491

[7]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems & Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056

[8]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[9]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[10]

G. Infante. Positive solutions of some nonlinear BVPs involving singularities and integral BCs. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 99-106. doi: 10.3934/dcdss.2008.1.99

[11]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[12]

Patricio Felmer, Alexander Quaas. Fundamental solutions for a class of Isaacs integral operators. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 493-508. doi: 10.3934/dcds.2011.30.493

[13]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[14]

Peter W. Bates, Ji Li, Mingji Zhang. Singular fold with real noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2091-2107. doi: 10.3934/dcdsb.2016038

[15]

Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248

[16]

Pavel Krejčí, Harbir Lamba, Sergey Melnik, Dmitrii Rachinskii. Kurzweil integral representation of interacting Prandtl-Ishlinskii operators. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2949-2965. doi: 10.3934/dcdsb.2015.20.2949

[17]

Congming Li, Jisun Lim. The singularity analysis of solutions to some integral equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 453-464. doi: 10.3934/cpaa.2007.6.453

[18]

Joshua L. Mike, Vasileios Maroulas. Combinatorial Hodge theory for equitable kidney paired donation. Foundations of Data Science, 2019, 1 (1) : 87-101. doi: 10.3934/fods.2019004

[19]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[20]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (1)

[Back to Top]