May  2016, 10(2): 327-367. doi: 10.3934/ipi.2016003

On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives

1. 

Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse Cedex 9, France, France

2. 

Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 170-3, Correo 3, Santiago

Received  February 2015 Revised  May 2015 Published  May 2016

We consider the inverse problem of detecting the location and the shape of several obstacles immersed in a fluid flowing in a larger bounded domain $\Omega$ from partial boundary measurements in the two dimensional case. The fluid flow is governed by the steady-state Stokes equations. We use a topological sensitivity analysis for the Kohn-Vogelius functional in order to find the number and the qualitative location of the objects. Then we explore the numerical possibilities of this approach and also present a numerical method which combines the topological gradient algorithm with the classical geometric shape gradient algorithm; this blending method allows to find the number of objects, their relative location and their approximate shape.
Citation: Fabien Caubet, Carlos Conca, Matías Godoy. On the detection of several obstacles in 2D Stokes flow: Topological sensitivity and combination with shape derivatives. Inverse Problems & Imaging, 2016, 10 (2) : 327-367. doi: 10.3934/ipi.2016003
References:
[1]

G. Allaire, Continuity of the Darcy's law in the low-volume fraction limit, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 18 (1991), 475-499.  Google Scholar

[2]

G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes i. abstract framework, a volume distribution of holes, Archive for Rational Mechanics and Analysis, 113 (1990), 209-259. doi: 10.1007/BF00375065.  Google Scholar

[3]

G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method, Control Cybernet, 34 (2005), 59-80.  Google Scholar

[4]

F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Methods Appl. Sci., 23 (2000), 575-600. doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4.  Google Scholar

[5]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J.-H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[6]

S. Amstutz, The topological asymptotic for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 11 (2005), 401-425. doi: 10.1051/cocv:2005012.  Google Scholar

[7]

S. Amstutz, Topological sensitivity analysis for some nonlinear PDE systems, Journal de mathématiques pures et appliquées, 85 (2006), 540-557. doi: 10.1016/j.matpur.2005.10.008.  Google Scholar

[8]

S. Amstutz, M. Masmoudi and B. Samet, The topological asymptotic for the Helmholtz equation, SIAM J. Control Optim., 42 (2003), 1523-1544. doi: 10.1137/S0363012902406801.  Google Scholar

[9]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660.  Google Scholar

[10]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control Optim., 48 (): 2871.  doi: 10.1137/070704332.  Google Scholar

[11]

V. Bonnaillie-Noël and M. Dambrine, Interactions between moderately close circular inclusions: The Dirichlet-Laplace equation in the plane, Asymptot. Anal., 84 (2013), 197-227.  Google Scholar

[12]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation, Math. Models Methods Appl. Sci., 19 (2009), 1853-1882. doi: 10.1142/S021820250900398X.  Google Scholar

[13]

F. Boyer and P. Fabrie, Éléments d'Analyse pour l'étude de Quelques Modèles d'écoulements de Fluides Visqueux Incompressibles, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-29819-3.  Google Scholar

[14]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Birkhäuser Boston Inc., Boston, MA, 2005.  Google Scholar

[15]

M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods, J. Comput. Phys., 194 (2004), 344-362. doi: 10.1016/j.jcp.2003.09.033.  Google Scholar

[16]

A. Carpio and M.-L. Rapún, Solving inhomogeneous inverse problems by topological derivative methods, Inverse Problems, 24 (2008), 045014, 32 pp. doi: 10.1088/0266-5611/24/4/045014.  Google Scholar

[17]

A. Carpio and M.-L. Rapún, Topological derivatives for shape reconstruction, in Inverse Problems and Imaging, volume 1943 of Lecture Notes in Math., Springer, (2008), 85-133. doi: 10.1007/978-3-540-78547-7_5.  Google Scholar

[18]

A. Carpio and M.-L. Rapún, Hybrid topological derivative and gradient-based methods for electrical impedance tomography, Inverse Problems, 28 (2012), 095010, 22 pp. doi: 10.1088/0266-5611/28/9/095010.  Google Scholar

[19]

A. Carpio and M.-L. Rapún, Parameter identification in photothermal imaging, J. Math. Imaging Vision, 49 (2014), 273-288. doi: 10.1007/s10851-013-0459-y.  Google Scholar

[20]

F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow, Inverse Problems, 28 (2012), 105007, 31 pp. doi: 10.1088/0266-5611/28/10/105007.  Google Scholar

[21]

F. Caubet, M. Dambrine, D. Kateb and C. Z. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid, Inverse Probl. Imaging, 7 (2013), 123-157. doi: 10.3934/ipi.2013.7.123.  Google Scholar

[22]

J. Céa, S. Garreau, P. Guillaume and M. Masmoudi, The shape and topological optimizations connection, Comput. Methods Appl. Mech. Engrg., 188 (2000), 713-726. doi: 10.1016/S0045-7825(99)00357-6.  Google Scholar

[23]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010, 18pp. doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[24]

M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 95-121.  Google Scholar

[25]

O. Dorn and D. Lesselier, Level set methods for inverse scattering, Inverse Problems, 22 (2006), R67-R131. doi: 10.1088/0266-5611/22/4/R01.  Google Scholar

[26]

O. Dorn and D. Lesselier, Level set methods for inverse scattering-some recent developments, Inverse Problems, 25 (2009), 125001, 11pp. doi: 10.1088/0266-5611/25/12/125001.  Google Scholar

[27]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations., Springer-Verlag, New York, 1994.  Google Scholar

[28]

P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem, SIAM J. Control Optim., 41 (2002), 1042-1072. doi: 10.1137/S0363012901384193.  Google Scholar

[29]

P. Guillaume and K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations, SIAM J. Control Optim., 43 (2004), 1-31. doi: 10.1137/S0363012902411210.  Google Scholar

[30]

M. Hassine, Shape optimization for the Stokes equations using topological sensitivity analysis, ARIMA, 5 (2006), 216-229. Google Scholar

[31]

M. Hassine and M. Masmoudi, The topological asymptotic expansion for the quasi-Stokes problem, ESAIM Control Optim. Calc. Var., 10 (2004), 478-504. doi: 10.1051/cocv:2004016.  Google Scholar

[32]

L. He, C.-Y. Kao and S. Osher, Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys., 225 (2007), 891-909. doi: 10.1016/j.jcp.2007.01.003.  Google Scholar

[33]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5.  Google Scholar

[34]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set, Inverse Problems, 14 (1998), 685-706. doi: 10.1088/0266-5611/14/3/018.  Google Scholar

[35]

D. Martin, Finite Element Library Mélina,, , ().   Google Scholar

[36]

V. Maz'ya and A. Movchan, Asymptotic treatment of perforated domains without homogenization, Math. Nachr., 283 (2010), 104-125. doi: 10.1002/mana.200910045.  Google Scholar

[37]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. I, Birkhäuser Verlag, Basel, 2000.  Google Scholar

[38]

V. Maz'ya and S.V. Poborchi, Differentiable Functions on Bad Domains, World Scientific Publishing Co. Inc., River Edge, NJ, 1997.  Google Scholar

[39]

F. Murat and J. Simon, Sur le Contrôle par un Domaine Géométrique, Rapport du L.A. 189, Université de Paris VI, France, 1976. Google Scholar

[40]

J. Nocedal and S. J. Wright, Numerical Optimization, $2^{nd}$ edition, Springer, New York, 2006.  Google Scholar

[41]

O. A. Oleĭnik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[42]

O. Pantz and K. Trabelsi, Simultaneous shape, topology, and homogenized properties optimization, Struct. Multidiscip. Optim., 34 (2007), 361-365. doi: 10.1007/s00158-006-0080-4.  Google Scholar

[43]

A. Schumacher, Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien, Ph.D thesis, Universität-Gesamthochschule-Siegen, 1995. Google Scholar

[44]

K. Sid Idris, Sensibilité Topologique en Optimisation de Forme, Ph.D thesis, Institut National des Sciences Apliquées de Toulouse, 2001. Google Scholar

[45]

J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2 (1981), 649-687. doi: 10.1080/01630563.1980.10120631.  Google Scholar

[46]

J. Simon, Second variations for domain optimization problems, In Control and estimation of distributed parameter systems (Vorau, 1988) Birkhäuser, Basel, 91 (1989), 361-378.  Google Scholar

[47]

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim., 37 (1999), 1251-1272. doi: 10.1137/S0363012997323230.  Google Scholar

[48]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.  Google Scholar

show all references

References:
[1]

G. Allaire, Continuity of the Darcy's law in the low-volume fraction limit, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 18 (1991), 475-499.  Google Scholar

[2]

G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes i. abstract framework, a volume distribution of holes, Archive for Rational Mechanics and Analysis, 113 (1990), 209-259. doi: 10.1007/BF00375065.  Google Scholar

[3]

G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method, Control Cybernet, 34 (2005), 59-80.  Google Scholar

[4]

F. Alliot and C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces, Math. Methods Appl. Sci., 23 (2000), 575-600. doi: 10.1002/(SICI)1099-1476(200004)23:6<575::AID-MMA128>3.0.CO;2-4.  Google Scholar

[5]

C. Alvarez, C. Conca, L. Friz, O. Kavian and J.-H. Ortega, Identification of immersed obstacles via boundary measurements, Inverse Problems, 21 (2005), 1531-1552. doi: 10.1088/0266-5611/21/5/003.  Google Scholar

[6]

S. Amstutz, The topological asymptotic for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., 11 (2005), 401-425. doi: 10.1051/cocv:2005012.  Google Scholar

[7]

S. Amstutz, Topological sensitivity analysis for some nonlinear PDE systems, Journal de mathématiques pures et appliquées, 85 (2006), 540-557. doi: 10.1016/j.matpur.2005.10.008.  Google Scholar

[8]

S. Amstutz, M. Masmoudi and B. Samet, The topological asymptotic for the Helmholtz equation, SIAM J. Control Optim., 42 (2003), 1523-1544. doi: 10.1137/S0363012902406801.  Google Scholar

[9]

M. Badra, F. Caubet and M. Dambrine, Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., 21 (2011), 2069-2101. doi: 10.1142/S0218202511005660.  Google Scholar

[10]

A. Ben Abda, M. Hassine, M. Jaoua and M. Masmoudi, Topological sensitivity analysis for the location of small cavities in Stokes flow,, SIAM J. Control Optim., 48 (): 2871.  doi: 10.1137/070704332.  Google Scholar

[11]

V. Bonnaillie-Noël and M. Dambrine, Interactions between moderately close circular inclusions: The Dirichlet-Laplace equation in the plane, Asymptot. Anal., 84 (2013), 197-227.  Google Scholar

[12]

V. Bonnaillie-Noël, M. Dambrine, S. Tordeux and G. Vial, Interactions between moderately close inclusions for the Laplace equation, Math. Models Methods Appl. Sci., 19 (2009), 1853-1882. doi: 10.1142/S021820250900398X.  Google Scholar

[13]

F. Boyer and P. Fabrie, Éléments d'Analyse pour l'étude de Quelques Modèles d'écoulements de Fluides Visqueux Incompressibles, Springer-Verlag, Berlin, 2006. doi: 10.1007/3-540-29819-3.  Google Scholar

[14]

D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Birkhäuser Boston Inc., Boston, MA, 2005.  Google Scholar

[15]

M. Burger, B. Hackl and W. Ring, Incorporating topological derivatives into level set methods, J. Comput. Phys., 194 (2004), 344-362. doi: 10.1016/j.jcp.2003.09.033.  Google Scholar

[16]

A. Carpio and M.-L. Rapún, Solving inhomogeneous inverse problems by topological derivative methods, Inverse Problems, 24 (2008), 045014, 32 pp. doi: 10.1088/0266-5611/24/4/045014.  Google Scholar

[17]

A. Carpio and M.-L. Rapún, Topological derivatives for shape reconstruction, in Inverse Problems and Imaging, volume 1943 of Lecture Notes in Math., Springer, (2008), 85-133. doi: 10.1007/978-3-540-78547-7_5.  Google Scholar

[18]

A. Carpio and M.-L. Rapún, Hybrid topological derivative and gradient-based methods for electrical impedance tomography, Inverse Problems, 28 (2012), 095010, 22 pp. doi: 10.1088/0266-5611/28/9/095010.  Google Scholar

[19]

A. Carpio and M.-L. Rapún, Parameter identification in photothermal imaging, J. Math. Imaging Vision, 49 (2014), 273-288. doi: 10.1007/s10851-013-0459-y.  Google Scholar

[20]

F. Caubet and M. Dambrine, Localization of small obstacles in Stokes flow, Inverse Problems, 28 (2012), 105007, 31 pp. doi: 10.1088/0266-5611/28/10/105007.  Google Scholar

[21]

F. Caubet, M. Dambrine, D. Kateb and C. Z. Timimoun, A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid, Inverse Probl. Imaging, 7 (2013), 123-157. doi: 10.3934/ipi.2013.7.123.  Google Scholar

[22]

J. Céa, S. Garreau, P. Guillaume and M. Masmoudi, The shape and topological optimizations connection, Comput. Methods Appl. Mech. Engrg., 188 (2000), 713-726. doi: 10.1016/S0045-7825(99)00357-6.  Google Scholar

[23]

C. Conca, M. Malik and A. Munnier, Detection of a moving rigid solid in a perfect fluid, Inverse Problems, 26 (2010), 095010, 18pp. doi: 10.1088/0266-5611/26/9/095010.  Google Scholar

[24]

M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 96 (2002), 95-121.  Google Scholar

[25]

O. Dorn and D. Lesselier, Level set methods for inverse scattering, Inverse Problems, 22 (2006), R67-R131. doi: 10.1088/0266-5611/22/4/R01.  Google Scholar

[26]

O. Dorn and D. Lesselier, Level set methods for inverse scattering-some recent developments, Inverse Problems, 25 (2009), 125001, 11pp. doi: 10.1088/0266-5611/25/12/125001.  Google Scholar

[27]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations., Springer-Verlag, New York, 1994.  Google Scholar

[28]

P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem, SIAM J. Control Optim., 41 (2002), 1042-1072. doi: 10.1137/S0363012901384193.  Google Scholar

[29]

P. Guillaume and K. Sid Idris, Topological sensitivity and shape optimization for the Stokes equations, SIAM J. Control Optim., 43 (2004), 1-31. doi: 10.1137/S0363012902411210.  Google Scholar

[30]

M. Hassine, Shape optimization for the Stokes equations using topological sensitivity analysis, ARIMA, 5 (2006), 216-229. Google Scholar

[31]

M. Hassine and M. Masmoudi, The topological asymptotic expansion for the quasi-Stokes problem, ESAIM Control Optim. Calc. Var., 10 (2004), 478-504. doi: 10.1051/cocv:2004016.  Google Scholar

[32]

L. He, C.-Y. Kao and S. Osher, Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys., 225 (2007), 891-909. doi: 10.1016/j.jcp.2007.01.003.  Google Scholar

[33]

A. Henrot and M. Pierre, Variation et Optimisation de Formes, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5.  Google Scholar

[34]

A. Litman, D. Lesselier and F. Santosa, Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set, Inverse Problems, 14 (1998), 685-706. doi: 10.1088/0266-5611/14/3/018.  Google Scholar

[35]

D. Martin, Finite Element Library Mélina,, , ().   Google Scholar

[36]

V. Maz'ya and A. Movchan, Asymptotic treatment of perforated domains without homogenization, Math. Nachr., 283 (2010), 104-125. doi: 10.1002/mana.200910045.  Google Scholar

[37]

V. Maz'ya, S. Nazarov and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. I, Birkhäuser Verlag, Basel, 2000.  Google Scholar

[38]

V. Maz'ya and S.V. Poborchi, Differentiable Functions on Bad Domains, World Scientific Publishing Co. Inc., River Edge, NJ, 1997.  Google Scholar

[39]

F. Murat and J. Simon, Sur le Contrôle par un Domaine Géométrique, Rapport du L.A. 189, Université de Paris VI, France, 1976. Google Scholar

[40]

J. Nocedal and S. J. Wright, Numerical Optimization, $2^{nd}$ edition, Springer, New York, 2006.  Google Scholar

[41]

O. A. Oleĭnik, A. S. Shamaev and G. A. Yosifian, Mathematical Problems in Elasticity and Homogenization, North-Holland Publishing Co., Amsterdam, 1992.  Google Scholar

[42]

O. Pantz and K. Trabelsi, Simultaneous shape, topology, and homogenized properties optimization, Struct. Multidiscip. Optim., 34 (2007), 361-365. doi: 10.1007/s00158-006-0080-4.  Google Scholar

[43]

A. Schumacher, Topologieoptimisierung von Bauteilstrukturen unter Verwendung von Lopchpositionierungkrieterien, Ph.D thesis, Universität-Gesamthochschule-Siegen, 1995. Google Scholar

[44]

K. Sid Idris, Sensibilité Topologique en Optimisation de Forme, Ph.D thesis, Institut National des Sciences Apliquées de Toulouse, 2001. Google Scholar

[45]

J. Simon, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2 (1981), 649-687. doi: 10.1080/01630563.1980.10120631.  Google Scholar

[46]

J. Simon, Second variations for domain optimization problems, In Control and estimation of distributed parameter systems (Vorau, 1988) Birkhäuser, Basel, 91 (1989), 361-378.  Google Scholar

[47]

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization, SIAM J. Control Optim., 37 (1999), 1251-1272. doi: 10.1137/S0363012997323230.  Google Scholar

[48]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58106-9.  Google Scholar

[1]

Xiaoliang Cheng, Rongfang Gong, Weimin Han. A new Kohn-Vogelius type formulation for inverse source problems. Inverse Problems & Imaging, 2015, 9 (4) : 1051-1067. doi: 10.3934/ipi.2015.9.1051

[2]

Fabien Caubet, Marc Dambrine, Djalil Kateb, Chahnaz Zakia Timimoun. A Kohn-Vogelius formulation to detect an obstacle immersed in a fluid. Inverse Problems & Imaging, 2013, 7 (1) : 123-157. doi: 10.3934/ipi.2013.7.123

[3]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[4]

Audric Drogoul, Gilles Aubert. The topological gradient method for semi-linear problems and application to edge detection and noise removal. Inverse Problems & Imaging, 2016, 10 (1) : 51-86. doi: 10.3934/ipi.2016.10.51

[5]

Zelik S.. Formally gradient reaction-diffusion systems in Rn have zero spatio-temporal topological. Conference Publications, 2003, 2003 (Special) : 960-966. doi: 10.3934/proc.2003.2003.960

[6]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[7]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

[8]

H.T. Banks, S. Dediu, H.K. Nguyen. Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences & Engineering, 2007, 4 (3) : 403-430. doi: 10.3934/mbe.2007.4.403

[9]

Klaudiusz Wójcik, Piotr Zgliczyński. Topological horseshoes and delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 827-852. doi: 10.3934/dcds.2005.12.827

[10]

A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213

[11]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[12]

George Siopsis. Quantum topological data analysis with continuous variables. Foundations of Data Science, 2019, 1 (4) : 419-431. doi: 10.3934/fods.2019017

[13]

Tyrus Berry, Timothy Sauer. Consistent manifold representation for topological data analysis. Foundations of Data Science, 2019, 1 (1) : 1-38. doi: 10.3934/fods.2019001

[14]

Massimiliano Berti, M. Matzeu, Enrico Valdinoci. On periodic elliptic equations with gradient dependence. Communications on Pure & Applied Analysis, 2008, 7 (3) : 601-615. doi: 10.3934/cpaa.2008.7.601

[15]

Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295

[16]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[17]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[18]

Christian Pötzsche, Evamaria Russ. Topological decoupling and linearization of nonautonomous evolution equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1235-1268. doi: 10.3934/dcdss.2016050

[19]

Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043

[20]

Peng Zhang, Jiequan Li, Tong Zhang. On two-dimensional Riemann problem for pressure-gradient equations of the Euler system. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 609-634. doi: 10.3934/dcds.1998.4.609

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]