May  2016, 10(2): 379-407. doi: 10.3934/ipi.2016005

Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems

1. 

Institut de Mathématiques, Université de Toulouse, 118, Route de Narbonne, F-31062 Toulouse Cedex 9

Received  April 2015 Published  May 2016

We study the iterated quasi-reversibility method to regularize ill-posed elliptic and parabolic problems: data completion problems for Poisson's and heat equations. We define an abstract setting to treat both equations at once. We demonstrate the convergence of the regularized solution to the exact one, and propose a strategy to deal with noise on the data. We present numerical experiments for both problems: a two-dimensional corrosion detection problem and the one-dimensional heat equation with lateral data. In both cases, the method proves to be efficient even with highly corrupted data.
Citation: Jérémi Dardé. Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Problems & Imaging, 2016, 10 (2) : 379-407. doi: 10.3934/ipi.2016005
References:
[1]

G. Alessandrini, L. Del Piero and L Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse problems, 19 (2003), 973.  doi: 10.1088/0266-5611/19/4/312.  Google Scholar

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[3]

K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of the backward heat equation,, Journal of Inequalities and Applications, 3 (1999), 51.  doi: 10.1155/S1025583499000041.  Google Scholar

[4]

S. Andrieux, T. N. Baranger and A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional,, Inverse problems, 22 (2006), 115.  doi: 10.1088/0266-5611/22/1/007.  Google Scholar

[5]

M. Azaïez, F. Ben Belgacem and H. El Fekih, On Cauchy's problem: II. Completion, regularization and approximation,, Inverse Problems, 22 (2006), 1307.  doi: 10.1088/0266-5611/22/4/012.  Google Scholar

[6]

A. Ben Abda, J. Blum, C. Boulbe and B. Faugeras, Minimization of an energy error functional to solve a Cauchy problem arising in plasma physics: The reconstruction of the magnetic flux in the vacuum surrounding the plasma in a Tokamak,, ARIMA 15 (2012), 15 (2012), 37.   Google Scholar

[7]

L. Baratchart, L. Bourgeois and J. Leblond, Uniqueness results for inverse Robin problems with bounded coefficient,, J. Funct. Anal., 270 (2016), 2508.  doi: 10.1016/j.jfa.2016.01.011.  Google Scholar

[8]

F. Ben Belgacem, Why is the Cauchy problem severely ill-posed?,, Inverse problems, 23 (2007), 823.  doi: 10.1088/0266-5611/23/2/020.  Google Scholar

[9]

F. Ben Belgacem, D. T. Du and F. Jelassi, Extended-domain-Lavrentiev's regularization for the Cauchy problem,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/4/045005.  Google Scholar

[10]

J. Blum, C. Boulbe and B. Faugeras, Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time,, Journal of Computational Physics, 231 (2012), 960.  doi: 10.1016/j.jcp.2011.04.005.  Google Scholar

[11]

Y. Boukari and H. Haddar, A convergent data completion algorithm using surface integral equations,, Inverse Problems, 31 (2015).  doi: 10.1088/0266-5611/31/3/035011.  Google Scholar

[12]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[13]

L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 22 (2006), 413.  doi: 10.1088/0266-5611/22/2/002.  Google Scholar

[14]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[16]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23.  doi: 10.3934/ipi.2014.8.23.  Google Scholar

[17]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[18]

K. Bryan and L. F. Caudill, Jr., An inverse problem in thermal imaging,, SIAM J. Appl. Math., 56 (1996), 715.  doi: 10.1137/S0036139994277828.  Google Scholar

[19]

E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem,, Mathematics of Computation, (2016).  doi: 10.1090/mcom/3092.  Google Scholar

[20]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/3/035005.  Google Scholar

[21]

S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse problems, 15 (1999), 1425.  doi: 10.1088/0266-5611/15/6/303.  Google Scholar

[22]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, (2002).  doi: 10.1137/1.9780898719208.  Google Scholar

[23]

A. Cimetière, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization,, Inverse problems, 17 (2001), 553.  doi: 10.1088/0266-5611/17/3/313.  Google Scholar

[24]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems,, Electronic Journal of Differential Equations, 8 (1994), 1.   Google Scholar

[25]

C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM Journal on Scientific Computing, 30 (2007), 1.  doi: 10.1137/06066970X.  Google Scholar

[26]

J. Dardé, The 'exterior approach': A new framework to solve inverse obstacle problems,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015008.  Google Scholar

[27]

J. Dardé, A. Hannukainen and N. Hyvönen, An $H_text{div}$-Based Mixed Quasi-reversibility Method for Solving Elliptic Cauchy Problems,, SIAM J. Numer. Anal., 51 (2013), 2123.  doi: 10.1137/120895123.  Google Scholar

[28]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996).  doi: 10.1007/978-94-009-1740-8.  Google Scholar

[29]

D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical results and numerical methods,, Inverse problems, 15 (1999), 41.  doi: 10.1088/0266-5611/15/1/008.  Google Scholar

[30]

P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions,, Math. Models Methods Appl. Sci., 7 (1997), 957.  doi: 10.1142/S0218202597000487.  Google Scholar

[31]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Classic in Applied Mathematics, (2011).  doi: 10.1137/1.9781611972030.  Google Scholar

[32]

H. Harbrecht and J. Tausch, On the numerical solution of a shape optimization problem for the heat equation,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/110855703.  Google Scholar

[33]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075005.  Google Scholar

[34]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation,, SIAM Journal on Applied Mathematics, 51 (1991), 1653.  doi: 10.1137/0151085.  Google Scholar

[35]

R. Lattès and J. L. Lions, The Method of Quasi-reversibility: Applications to Partial Differential Equations,, American Elsevier Publishing Company, (1969).   Google Scholar

[36]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.  doi: 10.1051/cocv/2011168.  Google Scholar

[37]

R. E. Puzyrev and A. A. Shlapunov, On an Ill-posed problem for the heat equation,, Journal of Siberian Federal University, 5 (2012), 337.   Google Scholar

[38]

E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse problems, 23 (2007), 1311.  doi: 10.1088/0266-5611/23/3/027.  Google Scholar

[39]

A. N. Tykhonov, Solution of incorrectly formulated problems and the regularization method,, Soviet Math. Dokl., 4 (1063).   Google Scholar

show all references

References:
[1]

G. Alessandrini, L. Del Piero and L Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse problems, 19 (2003), 973.  doi: 10.1088/0266-5611/19/4/312.  Google Scholar

[2]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability for the Cauchy problem for elliptic equations,, Inverse problems, 25 (2009).  doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[3]

K. A. Ames and L. E. Payne, Continuous dependence on modeling for some well-posed perturbations of the backward heat equation,, Journal of Inequalities and Applications, 3 (1999), 51.  doi: 10.1155/S1025583499000041.  Google Scholar

[4]

S. Andrieux, T. N. Baranger and A. Ben Abda, Solving Cauchy problems by minimizing an energy-like functional,, Inverse problems, 22 (2006), 115.  doi: 10.1088/0266-5611/22/1/007.  Google Scholar

[5]

M. Azaïez, F. Ben Belgacem and H. El Fekih, On Cauchy's problem: II. Completion, regularization and approximation,, Inverse Problems, 22 (2006), 1307.  doi: 10.1088/0266-5611/22/4/012.  Google Scholar

[6]

A. Ben Abda, J. Blum, C. Boulbe and B. Faugeras, Minimization of an energy error functional to solve a Cauchy problem arising in plasma physics: The reconstruction of the magnetic flux in the vacuum surrounding the plasma in a Tokamak,, ARIMA 15 (2012), 15 (2012), 37.   Google Scholar

[7]

L. Baratchart, L. Bourgeois and J. Leblond, Uniqueness results for inverse Robin problems with bounded coefficient,, J. Funct. Anal., 270 (2016), 2508.  doi: 10.1016/j.jfa.2016.01.011.  Google Scholar

[8]

F. Ben Belgacem, Why is the Cauchy problem severely ill-posed?,, Inverse problems, 23 (2007), 823.  doi: 10.1088/0266-5611/23/2/020.  Google Scholar

[9]

F. Ben Belgacem, D. T. Du and F. Jelassi, Extended-domain-Lavrentiev's regularization for the Cauchy problem,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/4/045005.  Google Scholar

[10]

J. Blum, C. Boulbe and B. Faugeras, Reconstruction of the equilibrium of the plasma in a Tokamak and identification of the current density profile in real time,, Journal of Computational Physics, 231 (2012), 960.  doi: 10.1016/j.jcp.2011.04.005.  Google Scholar

[11]

Y. Boukari and H. Haddar, A convergent data completion algorithm using surface integral equations,, Inverse Problems, 31 (2015).  doi: 10.1088/0266-5611/31/3/035011.  Google Scholar

[12]

L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 21 (2005), 1087.  doi: 10.1088/0266-5611/21/3/018.  Google Scholar

[13]

L. Bourgeois, Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation,, Inverse Problems, 22 (2006), 413.  doi: 10.1088/0266-5611/22/2/002.  Google Scholar

[14]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[15]

L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem,, Inverse Problems and Imaging, 4 (2010), 351.  doi: 10.3934/ipi.2010.4.351.  Google Scholar

[16]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23.  doi: 10.3934/ipi.2014.8.23.  Google Scholar

[17]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Universitext. Springer, (2011).  doi: 10.1007/978-0-387-70914-7.  Google Scholar

[18]

K. Bryan and L. F. Caudill, Jr., An inverse problem in thermal imaging,, SIAM J. Appl. Math., 56 (1996), 715.  doi: 10.1137/S0036139994277828.  Google Scholar

[19]

E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem,, Mathematics of Computation, (2016).  doi: 10.1090/mcom/3092.  Google Scholar

[20]

H. Cao, M. V. Klibanov and S. V. Pereverzev, A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/3/035005.  Google Scholar

[21]

S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse problems, 15 (1999), 1425.  doi: 10.1088/0266-5611/15/6/303.  Google Scholar

[22]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems,, Classics in Applied Mathematics, (2002).  doi: 10.1137/1.9780898719208.  Google Scholar

[23]

A. Cimetière, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization,, Inverse problems, 17 (2001), 553.  doi: 10.1088/0266-5611/17/3/313.  Google Scholar

[24]

G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for non-well-posed problems,, Electronic Journal of Differential Equations, 8 (1994), 1.   Google Scholar

[25]

C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM Journal on Scientific Computing, 30 (2007), 1.  doi: 10.1137/06066970X.  Google Scholar

[26]

J. Dardé, The 'exterior approach': A new framework to solve inverse obstacle problems,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/1/015008.  Google Scholar

[27]

J. Dardé, A. Hannukainen and N. Hyvönen, An $H_text{div}$-Based Mixed Quasi-reversibility Method for Solving Elliptic Cauchy Problems,, SIAM J. Numer. Anal., 51 (2013), 2123.  doi: 10.1137/120895123.  Google Scholar

[28]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Mathematics and its Applications, (1996).  doi: 10.1007/978-94-009-1740-8.  Google Scholar

[29]

D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical results and numerical methods,, Inverse problems, 15 (1999), 41.  doi: 10.1088/0266-5611/15/1/008.  Google Scholar

[30]

P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions,, Math. Models Methods Appl. Sci., 7 (1997), 957.  doi: 10.1142/S0218202597000487.  Google Scholar

[31]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Classic in Applied Mathematics, (2011).  doi: 10.1137/1.9781611972030.  Google Scholar

[32]

H. Harbrecht and J. Tausch, On the numerical solution of a shape optimization problem for the heat equation,, SIAM J. Sci. Comput., 35 (2013).  doi: 10.1137/110855703.  Google Scholar

[33]

M. Ikehata and M. Kawashita, The enclosure method for the heat equation,, Inverse Problems, 25 (2009).  doi: 10.1088/0266-5611/25/7/075005.  Google Scholar

[34]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for cauchy problems for Laplace's equation,, SIAM Journal on Applied Mathematics, 51 (1991), 1653.  doi: 10.1137/0151085.  Google Scholar

[35]

R. Lattès and J. L. Lions, The Method of Quasi-reversibility: Applications to Partial Differential Equations,, American Elsevier Publishing Company, (1969).   Google Scholar

[36]

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations,, ESAIM Control Optim. Calc. Var., 18 (2012), 712.  doi: 10.1051/cocv/2011168.  Google Scholar

[37]

R. E. Puzyrev and A. A. Shlapunov, On an Ill-posed problem for the heat equation,, Journal of Siberian Federal University, 5 (2012), 337.   Google Scholar

[38]

E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse problems, 23 (2007), 1311.  doi: 10.1088/0266-5611/23/3/027.  Google Scholar

[39]

A. N. Tykhonov, Solution of incorrectly formulated problems and the regularization method,, Soviet Math. Dokl., 4 (1063).   Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[4]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[8]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[11]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[14]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[15]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[20]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]