May  2016, 10(2): 409-432. doi: 10.3934/ipi.2016006

Ghost imaging in the random paraxial regime

1. 

Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, Université Paris Diderot, 75205 Paris Cedex 13

Received  October 2014 Published  May 2016

In this paper we analyze a wave-based imaging modality called ghost imaging that can produce an image of an object illuminated by a partially coherent source. The image of the object is obtained by correlating the intensities measured by two detectors, one that does not view the object and another one that does view the object. More exactly, a high-resolution detector measures the intensity of a wave field emitted by a partially coherent source which has not interacted with the object to be imaged. A bucket (or single-pixel) detector collects the total (spatially-integrated) intensity of the wave field emitted by the same source that has interacted with the object. The correlation of the intensity measured at the high-resolution detector with the intensity measured by the bucket detector gives an image of the object. In this paper we analyze this imaging modality when the medium through which the waves propagate is random. We discuss the relation with time reversal focusing and with correlation-based imaging using ambient noise sources. We clarify the role of the partial coherence of the source and we study how scattering affects the resolution properties of the ghost imaging function in the paraxial regime: the image resolution is all the better as the source is less coherent, and all the worse as the medium is more scattering.
Citation: Josselin Garnier. Ghost imaging in the random paraxial regime. Inverse Problems and Imaging, 2016, 10 (2) : 409-432. doi: 10.3934/ipi.2016006
References:
[1]

D. G. Alfaro Vigo, J.-P. Fouque, J. Garnier and A. Nachbin, Robustness of time reversal for waves in time-dependent random media, Stochastic Process. Appl., 113 (2004), 289-313. doi: 10.1016/j.spa.2004.04.002.

[2]

G. Bal and L. Ryzhik, Stability of time reversed waves in changing media, Disc. Cont. Dyn. Syst. A, 12 (2005), 793-815. doi: 10.3934/dcds.2005.12.793.

[3]

P. Blomgren, G. Papanicolaou and H. Zhao, Super-resolution in time-reversal acoustics, J. Acoust. Soc. Amer., 111 (2002), 230-248. doi: 10.1121/1.1421342.

[4]

M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.

[5]

J. Cheng, Ghost imaging through turbulent atmosphere, Opt. Express, 17 (2009), 7916-7921. doi: 10.1364/OE.17.007916.

[6]

M. Fink, Time reversed acoustics, Scientific American, 281 (1999), 91-97.

[7]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, New York, 2007. doi: 10.1007/978-0-387-49808-9_4.

[8]

J. Garnier and G. Papanicolaou, Pulse propagation and time reversal in random waveguides, SIAM J. Appl. Math., 67 (2007), 1718-1739. doi: 10.1137/060659235.

[9]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2 (2009), 396-437. doi: 10.1137/080723454.

[10]

J. Garnier and G. Papanicolaou, Resolution analysis for imaging with noise, Inverse Problems, 26 (2010), 074001, 22pp. doi: 10.1088/0266-5611/26/7/074001.

[11]

J. Garnier and G. Papanicolaou, Fluctuation theory of ambient noise imaging, CRAS Geoscience, 343 (2011), 502-511. doi: 10.1016/j.crte.2011.01.004.

[12]

J. Garnier and K. Sølna, Coupled paraxial wave equations in random media in the white-noise regime, Ann. Appl. Probab., 19 (2009), 318-346. doi: 10.1214/08-AAP543.

[13]

J. Garnier and K. Sølna, Fourth-moment analysis for wave propagation in the white-noise paraxial regime, Arch. Rational Mech. Anal., 220 (2016), 37-81. doi: 10.1007/s00205-015-0926-2.

[14]

N. D. Hardy and J. H. Shapiro, Reflective Ghost Imaging through turbulence, Phys. Rev. A, 84 (2011), 063824. doi: 10.1103/PhysRevA.84.063824.

[15]

P. Hariharan, Optical Holography, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9781139174039.

[16]

A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE Press, Piscataway, 1997.

[17]

O. Katz, Y. Bromberg and Y. Silberberg, Compressive ghost imaging, Appl. Phys. Lett., 95 (2009), 131110. doi: 10.1063/1.3238296.

[18]

C. Li, T. Wang, J. Pu, W. Zhu and R. Rao, Ghost imaging with partially coherent light radiation through turbulent atmosphere, Appl. Phys. B, 99 (2010), 599-604. doi: 10.1007/s00340-010-3969-y.

[19]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.

[20]

J. H. Shapiro, Computational ghost imaging, Phys. Rev. A, 78 (2008), 061802(R). doi: 10.1364/IQEC.2009.IThK7.

[21]

J. H. Shapiro and R. W. Boyd, The physics of ghost imaging, Quantum Inf. Process., 11 (2012), 949-993. doi: 10.1007/s11128-011-0356-5.

[22]

F. D. Tappert, The parabolic approximation method, in Wave Propagation and Underwater Acoustics, Springer Lecture Notes in Physics, 70 (1977), 224-287.

[23]

V. I. Tatarski, Wave Propagation in a Turbulent Medium, Dover, New York, 1961.

[24]

B. J. Uscinski, The Elements of Wave Propagation in Random Media, McGraw Hill, New York, 1977.

[25]

A. Valencia, G. Scarcelli, M. D'Angelo and Y. Shih, Two-photon imaging with thermal light, Phys. Rev. Lett., 94 (2005), 063601.

[26]

P. Zhang, W. Gong, X. Shen and S. Han, Correlated imaging through atmospheric turbulence, Phys. Rev. A, 82 (2010), 033817. doi: 10.1103/PhysRevA.82.033817.

show all references

References:
[1]

D. G. Alfaro Vigo, J.-P. Fouque, J. Garnier and A. Nachbin, Robustness of time reversal for waves in time-dependent random media, Stochastic Process. Appl., 113 (2004), 289-313. doi: 10.1016/j.spa.2004.04.002.

[2]

G. Bal and L. Ryzhik, Stability of time reversed waves in changing media, Disc. Cont. Dyn. Syst. A, 12 (2005), 793-815. doi: 10.3934/dcds.2005.12.793.

[3]

P. Blomgren, G. Papanicolaou and H. Zhao, Super-resolution in time-reversal acoustics, J. Acoust. Soc. Amer., 111 (2002), 230-248. doi: 10.1121/1.1421342.

[4]

M. Born and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139644181.

[5]

J. Cheng, Ghost imaging through turbulent atmosphere, Opt. Express, 17 (2009), 7916-7921. doi: 10.1364/OE.17.007916.

[6]

M. Fink, Time reversed acoustics, Scientific American, 281 (1999), 91-97.

[7]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, Wave Propagation and Time Reversal in Randomly Layered Media, Springer, New York, 2007. doi: 10.1007/978-0-387-49808-9_4.

[8]

J. Garnier and G. Papanicolaou, Pulse propagation and time reversal in random waveguides, SIAM J. Appl. Math., 67 (2007), 1718-1739. doi: 10.1137/060659235.

[9]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium, SIAM J. Imaging Sciences, 2 (2009), 396-437. doi: 10.1137/080723454.

[10]

J. Garnier and G. Papanicolaou, Resolution analysis for imaging with noise, Inverse Problems, 26 (2010), 074001, 22pp. doi: 10.1088/0266-5611/26/7/074001.

[11]

J. Garnier and G. Papanicolaou, Fluctuation theory of ambient noise imaging, CRAS Geoscience, 343 (2011), 502-511. doi: 10.1016/j.crte.2011.01.004.

[12]

J. Garnier and K. Sølna, Coupled paraxial wave equations in random media in the white-noise regime, Ann. Appl. Probab., 19 (2009), 318-346. doi: 10.1214/08-AAP543.

[13]

J. Garnier and K. Sølna, Fourth-moment analysis for wave propagation in the white-noise paraxial regime, Arch. Rational Mech. Anal., 220 (2016), 37-81. doi: 10.1007/s00205-015-0926-2.

[14]

N. D. Hardy and J. H. Shapiro, Reflective Ghost Imaging through turbulence, Phys. Rev. A, 84 (2011), 063824. doi: 10.1103/PhysRevA.84.063824.

[15]

P. Hariharan, Optical Holography, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9781139174039.

[16]

A. Ishimaru, Wave Propagation and Scattering in Random Media, IEEE Press, Piscataway, 1997.

[17]

O. Katz, Y. Bromberg and Y. Silberberg, Compressive ghost imaging, Appl. Phys. Lett., 95 (2009), 131110. doi: 10.1063/1.3238296.

[18]

C. Li, T. Wang, J. Pu, W. Zhu and R. Rao, Ghost imaging with partially coherent light radiation through turbulent atmosphere, Appl. Phys. B, 99 (2010), 599-604. doi: 10.1007/s00340-010-3969-y.

[19]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.

[20]

J. H. Shapiro, Computational ghost imaging, Phys. Rev. A, 78 (2008), 061802(R). doi: 10.1364/IQEC.2009.IThK7.

[21]

J. H. Shapiro and R. W. Boyd, The physics of ghost imaging, Quantum Inf. Process., 11 (2012), 949-993. doi: 10.1007/s11128-011-0356-5.

[22]

F. D. Tappert, The parabolic approximation method, in Wave Propagation and Underwater Acoustics, Springer Lecture Notes in Physics, 70 (1977), 224-287.

[23]

V. I. Tatarski, Wave Propagation in a Turbulent Medium, Dover, New York, 1961.

[24]

B. J. Uscinski, The Elements of Wave Propagation in Random Media, McGraw Hill, New York, 1977.

[25]

A. Valencia, G. Scarcelli, M. D'Angelo and Y. Shih, Two-photon imaging with thermal light, Phys. Rev. Lett., 94 (2005), 063601.

[26]

P. Zhang, W. Gong, X. Shen and S. Han, Correlated imaging through atmospheric turbulence, Phys. Rev. A, 82 (2010), 033817. doi: 10.1103/PhysRevA.82.033817.

[1]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems and Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[2]

Mathias Fink, Josselin Garnier. Ambient noise correlation-based imaging with moving sensors. Inverse Problems and Imaging, 2017, 11 (3) : 477-500. doi: 10.3934/ipi.2017022

[3]

Jingzhi Li, Hongyu Liu, Hongpeng Sun, Jun Zou. Imaging acoustic obstacles by singular and hypersingular point sources. Inverse Problems and Imaging, 2013, 7 (2) : 545-563. doi: 10.3934/ipi.2013.7.545

[4]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems and Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[5]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[6]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems and Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[7]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[8]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems and Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[9]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems and Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[10]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[11]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[12]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems and Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[13]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[14]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems and Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[15]

Laurent Bourgeois, Jean-François Fritsch, Arnaud Recoquillay. Imaging junctions of waveguides. Inverse Problems and Imaging, 2021, 15 (2) : 285-314. doi: 10.3934/ipi.2020065

[16]

Shenglong Hu, Zheng-Hai Huang, Hong-Yan Ni, Liqun Qi. Positive definiteness of Diffusion Kurtosis Imaging. Inverse Problems and Imaging, 2012, 6 (1) : 57-75. doi: 10.3934/ipi.2012.6.57

[17]

Peijun Li, Yuliang Wang. Near-field imaging of obstacles. Inverse Problems and Imaging, 2015, 9 (1) : 189-210. doi: 10.3934/ipi.2015.9.189

[18]

Liliana Borcea, Dinh-Liem Nguyen. Imaging with electromagnetic waves in terminating waveguides. Inverse Problems and Imaging, 2016, 10 (4) : 915-941. doi: 10.3934/ipi.2016027

[19]

Josselin Garnier, Knut Solna. Filtered Kirchhoff migration of cross correlations of ambient noise signals. Inverse Problems and Imaging, 2011, 5 (2) : 371-390. doi: 10.3934/ipi.2011.5.371

[20]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (121)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]