\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Efficient tensor tomography in fan-beam coordinates

Abstract Related Papers Cited by
  • We propose a thorough analysis of the tensor tomography problem on the Euclidean unit disk parameterized in fan-beam coordinates. This includes, for the inversion of the Radon transform over functions, using another range characterization first appearing in [32] to enforce in a fast way classical moment conditions at all orders. When considering direction-dependent integrands (e.g., tensors), a problem where injectivity no longer holds, we propose a suitable representative (other than the traditionally sought-after solenoidal candidate) to be reconstructed, as well as an efficient procedure to do so. Numerical examples illustrating the method are provided at the end.
    Mathematics Subject Classification: Primary: 35R30, 44A12; Secondary: 30E20, 92C55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Y. E. Anikonov and V. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics, J. Inverse Ill-Posed Probl., 5 (1997), 487-490.doi: 10.1515/jiip.1997.5.6.487.

    [2]

    G.-H. Chen and S. Leng, A new data consistency condition for fan-beam projection data, Med. Phys., 32 (2005), 961-965.doi: 10.1118/1.1861395.

    [3]

    R. Clackdoyle and L. Desbat, Full data consistency conditions for cone-beam projections with sources on a plane, Physics in medicine and biology, 58 (2013), p8437.doi: 10.1088/0031-9155/58/23/8437.

    [4]

    R. Clarkdoyle, Necessary and sufficient consistency conditions for fan-beam pprojections along a line, IEEE transations on Nuclear Science, 60 (2013), 1560-1569.

    [5]

    N. S. Dairbekov and V. Sharafutdinov, On conformal killing symmetric tensor fields on riemannian manifolds, (Russian) Mat. Tr., 13 (2010), 85-145.

    [6]

    E. Derevtsov and V. Pickalov, Reconstruction of vector fields and their singularities by ray transforms, Numerical Analysis and Applications, 4 (2011), 21-35.doi: 10.1134/S1995423911010034.

    [7]

    E. Derevtsov and I. E. Svetov, Tomography of tensor fields in the plain, Eurasian Journal of Mathematical and computer applications, 3 (2015), 25-69.

    [8]

    E. Y. Derevtsov, An approach to direct reconstruction of a solenoidal part in vector and tensor tomography problems, J. Inv. Ill-Posed Problems, 13 (2005), 213-246.doi: 10.1515/156939405775199587.

    [9]

    C. Epstein, Introduction to the Mathematics of Medical Imaging, $2^{nd}$ edition, Society for Industrial and Applied Mathematics, 2008.doi: 10.1137/1.9780898717792.

    [10]

    I. Gelfand and M. Graev, Integrals over hyperplanes of basic and generalized functions, Dokl. Akad. Nauk. SSSR, 135 (1960), 1307-1310. English transl., Soviet Math. Dokl., 1 (1960), 1369-1372.

    [11]

    C. Guillarmou, Invariant distributions and X-ray transform for Anosov flows, J. Diff. Geom., (to appear) (2016). arXiv:1408.4732

    [12]

    ________, Lens rigidity for manifolds with hyperbolic trapped set, (2014) arXiv:1412.1760

    [13]

    C. Guillarmou, G. Paternain, M. Salo and G. Uhlmann, The X-ray transform for connections in negative curvature, Comm. Math. Phys., 343 (2016), 83-127.doi: 10.1007/s00220-015-2510-x.

    [14]

    V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved 2-manifolds, Topology, 19 (1980), 301-312.doi: 10.1016/0040-9383(80)90015-4.

    [15]

    S. Helgason, The Radon Transform, $2^{nd}$ edition, Birkäuser, 1999.doi: 10.1007/978-1-4757-1463-0.

    [16]

    G. T. Herman, A. V. Lakshminarayanan and A. Naparstek, Convolution reconstruction techniques for divergent beams, Comput. Biol. Med., 6 (1976), 259-271.

    [17]

    S. Holman and G. Uhlmann, On the microlocal analysis of the geodesic x-ray transform with conjugate points, preprint, 2015. arXiv:1502.06545

    [18]

    J. Ilmavirta, On Radon transforms on compact Lie groups, Proceedings of the American Mathematical Society, 144 (2016), 681-691.

    [19]

    ________, On Radon transforms on finite groups. arXiv:1411.3829.

    [20]

    ________, On Radon transforms on tori, Journal of Fourier Analysis and Applications, 21 (2015), 370-382.

    [21]

    S. Kazantsev and A. Bukhgeim, The chebyshev ridge polynomials in 2d tensor tomography, Journal of Inverse and Ill-posed Problems, 14 (2006), 157-188.doi: 10.1515/156939406777571094.

    [22]

    S. G. Kazantsev and A. A. Bukhgeim, Singular value decomposition for the 2d fan-beam radon transform of tensor fields, Journal of Inverse and Ill-posed Problems, 12 (2004), 245-278.doi: 10.1515/1569394042215865.

    [23]

    D. Ludwig, The radon transform on euclidean space, Communications on Pure and Applied Mathematics, 19 (1966), 49-81.

    [24]

    F. Monard, Numerical implementation of two-dimensional geodesic X-ray transforms and their inversion, SIAM J. Imaging Sciences, 7 (2014), 1335-1357.doi: 10.1137/130938657.

    [25]

    ________, On reconstruction formulas for the X-ray transform acting on symmetric differentials on surfaces, Inverse Problems, 30 (2014), 065001.

    [26]

    ________, Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces, SIAM J. Math. Anal. (to appear), (2015).

    [27]

    F. Monard, P. Stefanov and G. Uhlmann, The geodesic X-ray transform on Riemannian surfaces with conjugate points, Comm. Math. Phys., 337 (2015), 1491-1513.doi: 10.1007/s00220-015-2328-6.

    [28]

    F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001.doi: 10.1137/1.9780898719284.

    [29]

    S. Patch, Moment conditions indirectly improve image quality, Contemporary Mathematics, 278 (2001), 193-205.doi: 10.1090/conm/278/04605.

    [30]

    G. Paternain, M. Salo and G. Uhlmann, On the range of the attenuated ray transform for unitary connections, International Math. Research Notices, 2015 (2015), 873-897.doi: 10.1093/imrn/rnt228.

    [31]

    ________, Tensor tomography on surfaces, Inventiones Math., 193 (2013), 229-247.

    [32]

    L. Pestov and G. Uhlmann, On the characterization of the range and inversion formulas for the geodesic X-ray transform, International Math. Research Notices, 80 (2004), 4331-4347.doi: 10.1155/S1073792804142116.

    [33]

    ________, Two-dimensional compact simple Riemannian manifolds are boundary distance rigid, Annals of Mathematics, 161 (2005), 1093-1110.

    [34]

    S. Petermichl and J. Wittwer, A sharp estimate for the weighted Hilbert transform via Bellman functions, Michigan Math, 50 (2002), 71-87.doi: 10.1307/mmj/1022636751.

    [35]

    J.Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte lngs gewisser Mannigfaltigkeiten, Berichte über die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 69 (1917), 262-277.

    [36]

    K. Sadiq, O. Scherzer and A. Tamasan, On the X-ray transform of planar symmetric 2-tensors, preprint, 2015.arXiv:1503.04322

    [37]

    K. Sadiq and A. Tamasan, On the range characterization of the two-dimensional attenuated Doppler transform, SIAM Journal on Mathematical Analysis, 47 (2015), 2001-2021.doi: 10.1137/140984282.

    [38]

    ________, On the range of the attenuated radon transform in strictly convex sets, Trans. Amer. Math. Soc., 367 (2015), 5375-5398.

    [39]

    V. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994.doi: 10.1515/9783110900095.

    [40]

    ________, Integral geometry of tensor fields on a surface of revolution, Siberian Math. J., 38 (1997).

    [41]

    ________, Variations of Dirichlet-to-Neumann map and deformation boundary rigidity on simple 2-manifolds, J. Geom. Anal., 17 (2007), 147-187.

    [42]

    ________, Killing tensor fields on the 2-torus, preprint, 2014. arXiv:1411.4741.

    [43]

    P. Stefanov and G. Uhlmann, The geodesic X-ray transform with fold caustics, Analysis and PDE, 5 (2012), 219-260.doi: 10.2140/apde.2012.5.219.

    [44]

    P. Stefanov, G. Uhlmann and A. Vasy, Inverting the local geodesic X-ray transform on tensors, arXiv:1410.5145 (2014).

    [45]

    ________, Boundary rigidity with partial data, Journal of the American Mathematical Society (to appear), (2015).

    [46]

    I. E. Svetov, E. Y. Derevtsov, Y. S. Volkov and T. Schuster, A numerical solver based on B-splines for 2D vector field tomography in a refracting medium, Mathematics and Computers in Simulation, 97 (2014), 207-223.doi: 10.1016/j.matcom.2013.10.002.

    [47]

    G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Inventiones Math. (online), (2015), 1-38.doi: 10.1007/s00222-015-0631-7.

    [48]

    G. Van Gompel, M. Defrise and D. Van Dyck, Elliptical extrapolation of truncated 2d ct projections using helgason-ludwig consistency conditions, Medical Imaging, International Society for Optics and Photonics, 6142 (2006), 61424B-61424B.doi: 10.1117/12.653293.

    [49]

    A. Welch, C. Campbell, R. Clackdoyle, F. Natterer, M. Hudson, A. Bromiley, P. Mikecz, F. Chillcot, M. Dodd, P. Hopwood, et al., Attenuation correction in pet using consistency information, IEEE Transactions on Nuclear Science, 45 (1998), 3134-3141.doi: 10.1109/23.737676.

    [50]

    J. Xu, K. Taguchi and B. M. Tsui, Statistical projection completion in x-ray ct using consistency conditions, IEEE Transactions on Medical Imaging, 29 (2010), 1528-1540.

    [51]

    H. Yu and G. Wang, Data consistency based rigid motion artifact reduction in fan-beam ct, IEEE Transactions on Medical Imaging, 26 (2007), 249-260.doi: 10.1109/TMI.2006.889717.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(231) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return