-
Previous Article
A fast patch-dictionary method for whole image recovery
- IPI Home
- This Issue
-
Next Article
The factorization method for the Drude-Born-Fedorov model for periodic chiral structures
The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging
1. | Colorado State University, Department of Mathematics, 1874 Campus Delivery, Fort Collins, CO 80523-1874, United States |
References:
[1] |
H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise, Waves in Random and Complex Media, 22 (2012), 40-65.
doi: 10.1080/17455030.2010.532518. |
[2] |
G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108.
doi: 10.1063/1.526755. |
[3] |
M. Cheney and B. Borden, Fundamentals of Radar Imaging, SIAM, Philadelphia, 2009.
doi: 10.1137/1.9780898719291. |
[4] |
A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction, in London Mathematical Society Lecture Note Series 196, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511721441. |
[5] |
S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP‘85., IEEE, 10 (1985), 1017-1020.
doi: 10.1109/ICASSP.1985.1168129. |
[6] |
C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging, The Journal of Fourier Analysis and Applications, 10 (2004), 133-148.
doi: 10.1007/s00041-004-8008-0. |
[7] |
H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4757-3863-6. |
[8] |
D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis, Wiley-Interscience, New York, 2001. |
[9] |
S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory, Prentice Hall, Upper Saddle River, 1993. |
[10] |
D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis, IEEE Trans. Acoustics, Speech, and Signal Processing, 32 (1984), 886-906.
doi: 10.1109/TASSP.1984.1164405. |
[11] |
M. E. Taylor, Pseudodiferential Operators, Princeton University Press, Princeton, 1981. |
[12] |
F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II, The University Series in Mathematics, Plenum Press, New York, 1980. |
[13] |
K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2011. |
[14] |
K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging, SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, (2009), 73350I-73350I. |
[15] |
H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2014. |
[16] |
B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter, Inverse Problems, 22 (2006), 1705-1729.
doi: 10.1088/0266-5611/22/5/011. |
show all references
References:
[1] |
H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise, Waves in Random and Complex Media, 22 (2012), 40-65.
doi: 10.1080/17455030.2010.532518. |
[2] |
G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108.
doi: 10.1063/1.526755. |
[3] |
M. Cheney and B. Borden, Fundamentals of Radar Imaging, SIAM, Philadelphia, 2009.
doi: 10.1137/1.9780898719291. |
[4] |
A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction, in London Mathematical Society Lecture Note Series 196, Cambridge University Press, Cambridge, 1994.
doi: 10.1017/CBO9780511721441. |
[5] |
S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP‘85., IEEE, 10 (1985), 1017-1020.
doi: 10.1109/ICASSP.1985.1168129. |
[6] |
C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging, The Journal of Fourier Analysis and Applications, 10 (2004), 133-148.
doi: 10.1007/s00041-004-8008-0. |
[7] |
H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4757-3863-6. |
[8] |
D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis, Wiley-Interscience, New York, 2001. |
[9] |
S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory, Prentice Hall, Upper Saddle River, 1993. |
[10] |
D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis, IEEE Trans. Acoustics, Speech, and Signal Processing, 32 (1984), 886-906.
doi: 10.1109/TASSP.1984.1164405. |
[11] |
M. E. Taylor, Pseudodiferential Operators, Princeton University Press, Princeton, 1981. |
[12] |
F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II, The University Series in Mathematics, Plenum Press, New York, 1980. |
[13] |
K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2011. |
[14] |
K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging, SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, (2009), 73350I-73350I. |
[15] |
H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2014. |
[16] |
B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter, Inverse Problems, 22 (2006), 1705-1729.
doi: 10.1088/0266-5611/22/5/011. |
[1] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056 |
[2] |
Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems and Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659 |
[3] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems and Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[4] |
Seonho Park, Maciej Rysz, Kaitlin L. Fair, Panos M. Pardalos. Synthetic-Aperture Radar image based positioning in GPS-denied environments using Deep Cosine Similarity Neural Networks. Inverse Problems and Imaging, 2021, 15 (4) : 763-785. doi: 10.3934/ipi.2021013 |
[5] |
T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for synthetic-aperture imaging. Inverse Problems and Imaging, 2007, 1 (3) : 577-592. doi: 10.3934/ipi.2007.1.577 |
[6] |
Bo Jiang, Yongge Tian. On best linear unbiased estimation and prediction under a constrained linear random-effects model. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021209 |
[7] |
Mikhail Gilman, Semyon Tsynkov. A mathematical perspective on radar interferometry. Inverse Problems and Imaging, 2022, 16 (1) : 119-152. doi: 10.3934/ipi.2021043 |
[8] |
Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1 |
[9] |
Hanqing Jin, Shige Peng. Optimal unbiased estimation for maximal distribution. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 189-198. doi: 10.3934/puqr.2021009 |
[10] |
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013 |
[11] |
Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026 |
[12] |
Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems and Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831 |
[13] |
Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419 |
[14] |
Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems and Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465 |
[15] |
Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415 |
[16] |
Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007 |
[17] |
Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341 |
[18] |
Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems and Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024 |
[19] |
Bernadette N. Hahn, Melina-Loren Kienle Garrido, Christian Klingenberg, Sandra Warnecke. Using the Navier-Cauchy equation for motion estimation in dynamic imaging. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022018 |
[20] |
Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]