May  2016, 10(2): 549-561. doi: 10.3934/ipi.2016011

The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging

1. 

Colorado State University, Department of Mathematics, 1874 Campus Delivery, Fort Collins, CO 80523-1874, United States

Received  June 2015 Revised  October 2015 Published  May 2016

In this paper we investigate the relationship between two different techniques typically used in imaging and estimation problems. We focus on synthetic-aperture radar imaging and compare the methods of backprojection (standard for imaging) and best linear unbiased estimation (BLUE). We aim to reconstruct or estimate the reflectivity function of an object present in a scene of interest. We find that the estimate of the reflectivity (calculated using BLUE) and the reconstructed image (calculated using filtered backprojection) are the same when we utilize a criterion from microlocal analysis to define the optimal backprojection filter and assume the measured data is corrupted by zero-mean independently identically distributed (white) noise. In particular we show that the microlocal criterion for the optimal backprojection filter is equivalent to the unbiased constraint present in the BLUE technique.
Citation: Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems & Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011
References:
[1]

H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise, Waves in Random and Complex Media, 22 (2012), 40-65. doi: 10.1080/17455030.2010.532518.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108. doi: 10.1063/1.526755.  Google Scholar

[3]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[4]

A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction, in London Mathematical Society Lecture Note Series 196, Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9780511721441.  Google Scholar

[5]

S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP‘85., IEEE, 10 (1985), 1017-1020. doi: 10.1109/ICASSP.1985.1168129.  Google Scholar

[6]

C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging, The Journal of Fourier Analysis and Applications, 10 (2004), 133-148. doi: 10.1007/s00041-004-8008-0.  Google Scholar

[7]

H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4757-3863-6.  Google Scholar

[8]

D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis, Wiley-Interscience, New York, 2001.  Google Scholar

[9]

S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory, Prentice Hall, Upper Saddle River, 1993. Google Scholar

[10]

D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis, IEEE Trans. Acoustics, Speech, and Signal Processing, 32 (1984), 886-906. doi: 10.1109/TASSP.1984.1164405.  Google Scholar

[11]

M. E. Taylor, Pseudodiferential Operators, Princeton University Press, Princeton, 1981.  Google Scholar

[12]

F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II, The University Series in Mathematics, Plenum Press, New York, 1980.  Google Scholar

[13]

K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2011.  Google Scholar

[14]

K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging, SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, (2009), 73350I-73350I. Google Scholar

[15]

H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2014. Google Scholar

[16]

B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter, Inverse Problems, 22 (2006), 1705-1729. doi: 10.1088/0266-5611/22/5/011.  Google Scholar

show all references

References:
[1]

H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise, Waves in Random and Complex Media, 22 (2012), 40-65. doi: 10.1080/17455030.2010.532518.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108. doi: 10.1063/1.526755.  Google Scholar

[3]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[4]

A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction, in London Mathematical Society Lecture Note Series 196, Cambridge University Press, Cambridge, 1994. doi: 10.1017/CBO9780511721441.  Google Scholar

[5]

S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP‘85., IEEE, 10 (1985), 1017-1020. doi: 10.1109/ICASSP.1985.1168129.  Google Scholar

[6]

C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging, The Journal of Fourier Analysis and Applications, 10 (2004), 133-148. doi: 10.1007/s00041-004-8008-0.  Google Scholar

[7]

H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4757-3863-6.  Google Scholar

[8]

D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis, Wiley-Interscience, New York, 2001.  Google Scholar

[9]

S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory, Prentice Hall, Upper Saddle River, 1993. Google Scholar

[10]

D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis, IEEE Trans. Acoustics, Speech, and Signal Processing, 32 (1984), 886-906. doi: 10.1109/TASSP.1984.1164405.  Google Scholar

[11]

M. E. Taylor, Pseudodiferential Operators, Princeton University Press, Princeton, 1981.  Google Scholar

[12]

F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II, The University Series in Mathematics, Plenum Press, New York, 1980.  Google Scholar

[13]

K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2011.  Google Scholar

[14]

K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging, SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, (2009), 73350I-73350I. Google Scholar

[15]

H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter, Ph.D. Thesis, Rensselaer Polytechnic Institute in Troy, NY, 2014. Google Scholar

[16]

B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter, Inverse Problems, 22 (2006), 1705-1729. doi: 10.1088/0266-5611/22/5/011.  Google Scholar

[1]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems & Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056

[2]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

[3]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

[4]

Seonho Park, Maciej Rysz, Kaitlin L. Fair, Panos M. Pardalos. Synthetic-Aperture Radar image based positioning in GPS-denied environments using Deep Cosine Similarity Neural Networks. Inverse Problems & Imaging, 2021, 15 (4) : 763-785. doi: 10.3934/ipi.2021013

[5]

T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for synthetic-aperture imaging. Inverse Problems & Imaging, 2007, 1 (3) : 577-592. doi: 10.3934/ipi.2007.1.577

[6]

Mikhail Gilman, Semyon Tsynkov. A mathematical perspective on radar interferometry. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021043

[7]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[8]

Hanqing Jin, Shige Peng. Optimal unbiased estimation for maximal distribution. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 189-198. doi: 10.3934/puqr.2021009

[9]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[10]

Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems & Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831

[11]

Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419

[12]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[13]

Qiang Yin, Gongfa Li, Jianguo Zhu. Research on the method of step feature extraction for EOD robot based on 2D laser radar. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1415-1421. doi: 10.3934/dcdss.2015.8.1415

[14]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[15]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[16]

Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems & Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024

[17]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[18]

Shanshan Wang, Yanxia Chen, Taohui Xiao, Lei Zhang, Xin Liu, Hairong Zheng. LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging. Inverse Problems & Imaging, 2021, 15 (6) : 1363-1379. doi: 10.3934/ipi.2020051

[19]

Peng Cui, Hongguo Zhao, Jun-e Feng. State estimation for discrete linear systems with observation time-delayed noise. Journal of Industrial & Management Optimization, 2011, 7 (1) : 79-85. doi: 10.3934/jimo.2011.7.79

[20]

Elena K. Kostousova. State estimation for linear impulsive differential systems through polyhedral techniques. Conference Publications, 2009, 2009 (Special) : 466-475. doi: 10.3934/proc.2009.2009.466

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]