-
Previous Article
A fast patch-dictionary method for whole image recovery
- IPI Home
- This Issue
-
Next Article
The factorization method for the Drude-Born-Fedorov model for periodic chiral structures
The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging
1. | Colorado State University, Department of Mathematics, 1874 Campus Delivery, Fort Collins, CO 80523-1874, United States |
References:
[1] |
H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise,, Waves in Random and Complex Media, 22 (2012), 40.
doi: 10.1080/17455030.2010.532518. |
[2] |
G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99.
doi: 10.1063/1.526755. |
[3] |
M. Cheney and B. Borden, Fundamentals of Radar Imaging,, SIAM, (2009).
doi: 10.1137/1.9780898719291. |
[4] |
A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction,, in London Mathematical Society Lecture Note Series 196, 196 (1994).
doi: 10.1017/CBO9780511721441. |
[5] |
S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection,, Acoustics, 10 (1985), 1017.
doi: 10.1109/ICASSP.1985.1168129. |
[6] |
C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging,, The Journal of Fourier Analysis and Applications, 10 (2004), 133.
doi: 10.1007/s00041-004-8008-0. |
[7] |
H. V. Poor, An Introduction to Signal Detection and Estimation,, Springer-Verlag, (1988).
doi: 10.1007/978-1-4757-3863-6. |
[8] |
D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis,, Wiley-Interscience, (2001).
|
[9] |
S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory,, Prentice Hall, (1993). Google Scholar |
[10] |
D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis,, IEEE Trans. Acoustics, 32 (1984), 886.
doi: 10.1109/TASSP.1984.1164405. |
[11] |
M. E. Taylor, Pseudodiferential Operators,, Princeton University Press, (1981).
|
[12] |
F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II,, The University Series in Mathematics, (1980).
|
[13] |
K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging,, Ph.D. Thesis, (2011).
|
[14] |
K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging,, SPIE Defense, (2009). Google Scholar |
[15] |
H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter,, Ph.D. Thesis, (2014). Google Scholar |
[16] |
B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter,, Inverse Problems, 22 (2006), 1705.
doi: 10.1088/0266-5611/22/5/011. |
show all references
References:
[1] |
H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise,, Waves in Random and Complex Media, 22 (2012), 40.
doi: 10.1080/17455030.2010.532518. |
[2] |
G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99.
doi: 10.1063/1.526755. |
[3] |
M. Cheney and B. Borden, Fundamentals of Radar Imaging,, SIAM, (2009).
doi: 10.1137/1.9780898719291. |
[4] |
A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction,, in London Mathematical Society Lecture Note Series 196, 196 (1994).
doi: 10.1017/CBO9780511721441. |
[5] |
S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection,, Acoustics, 10 (1985), 1017.
doi: 10.1109/ICASSP.1985.1168129. |
[6] |
C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging,, The Journal of Fourier Analysis and Applications, 10 (2004), 133.
doi: 10.1007/s00041-004-8008-0. |
[7] |
H. V. Poor, An Introduction to Signal Detection and Estimation,, Springer-Verlag, (1988).
doi: 10.1007/978-1-4757-3863-6. |
[8] |
D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis,, Wiley-Interscience, (2001).
|
[9] |
S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory,, Prentice Hall, (1993). Google Scholar |
[10] |
D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis,, IEEE Trans. Acoustics, 32 (1984), 886.
doi: 10.1109/TASSP.1984.1164405. |
[11] |
M. E. Taylor, Pseudodiferential Operators,, Princeton University Press, (1981).
|
[12] |
F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II,, The University Series in Mathematics, (1980).
|
[13] |
K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging,, Ph.D. Thesis, (2011).
|
[14] |
K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging,, SPIE Defense, (2009). Google Scholar |
[15] |
H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter,, Ph.D. Thesis, (2014). Google Scholar |
[16] |
B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter,, Inverse Problems, 22 (2006), 1705.
doi: 10.1088/0266-5611/22/5/011. |
[1] |
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005 |
[2] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[3] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[4] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[5] |
Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363 |
[6] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[7] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[8] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[9] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[10] |
Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020129 |
[11] |
Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044 |
[12] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
[13] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[14] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[15] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[16] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[17] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[18] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[19] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[20] |
Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]