May  2016, 10(2): 549-561. doi: 10.3934/ipi.2016011

The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging

1. 

Colorado State University, Department of Mathematics, 1874 Campus Delivery, Fort Collins, CO 80523-1874, United States

Received  June 2015 Revised  October 2015 Published  May 2016

In this paper we investigate the relationship between two different techniques typically used in imaging and estimation problems. We focus on synthetic-aperture radar imaging and compare the methods of backprojection (standard for imaging) and best linear unbiased estimation (BLUE). We aim to reconstruct or estimate the reflectivity function of an object present in a scene of interest. We find that the estimate of the reflectivity (calculated using BLUE) and the reconstructed image (calculated using filtered backprojection) are the same when we utilize a criterion from microlocal analysis to define the optimal backprojection filter and assume the measured data is corrupted by zero-mean independently identically distributed (white) noise. In particular we show that the microlocal criterion for the optimal backprojection filter is equivalent to the unbiased constraint present in the BLUE technique.
Citation: Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems & Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011
References:
[1]

H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise,, Waves in Random and Complex Media, 22 (2012), 40.  doi: 10.1080/17455030.2010.532518.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99.  doi: 10.1063/1.526755.  Google Scholar

[3]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, SIAM, (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[4]

A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction,, in London Mathematical Society Lecture Note Series 196, 196 (1994).  doi: 10.1017/CBO9780511721441.  Google Scholar

[5]

S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection,, Acoustics, 10 (1985), 1017.  doi: 10.1109/ICASSP.1985.1168129.  Google Scholar

[6]

C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging,, The Journal of Fourier Analysis and Applications, 10 (2004), 133.  doi: 10.1007/s00041-004-8008-0.  Google Scholar

[7]

H. V. Poor, An Introduction to Signal Detection and Estimation,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4757-3863-6.  Google Scholar

[8]

D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis,, Wiley-Interscience, (2001).   Google Scholar

[9]

S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory,, Prentice Hall, (1993).   Google Scholar

[10]

D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis,, IEEE Trans. Acoustics, 32 (1984), 886.  doi: 10.1109/TASSP.1984.1164405.  Google Scholar

[11]

M. E. Taylor, Pseudodiferential Operators,, Princeton University Press, (1981).   Google Scholar

[12]

F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II,, The University Series in Mathematics, (1980).   Google Scholar

[13]

K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging,, Ph.D. Thesis, (2011).   Google Scholar

[14]

K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging,, SPIE Defense, (2009).   Google Scholar

[15]

H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter,, Ph.D. Thesis, (2014).   Google Scholar

[16]

B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter,, Inverse Problems, 22 (2006), 1705.  doi: 10.1088/0266-5611/22/5/011.  Google Scholar

show all references

References:
[1]

H. Ammari, J. Garnier and K. Solna, A statistical approach to target detection and localization in the presence of noise,, Waves in Random and Complex Media, 22 (2012), 40.  doi: 10.1080/17455030.2010.532518.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform,, J. Math. Phys., 26 (1985), 99.  doi: 10.1063/1.526755.  Google Scholar

[3]

M. Cheney and B. Borden, Fundamentals of Radar Imaging,, SIAM, (2009).  doi: 10.1137/1.9780898719291.  Google Scholar

[4]

A. Grigis and J. Sjostrand, Microlocal Analysis for Differential Operators: An Introduction,, in London Mathematical Society Lecture Note Series 196, 196 (1994).  doi: 10.1017/CBO9780511721441.  Google Scholar

[5]

S. Kay and G. F. Boudreaux-Bartels, On the optimality of the Wigner distribution for detection,, Acoustics, 10 (1985), 1017.  doi: 10.1109/ICASSP.1985.1168129.  Google Scholar

[6]

C. J. Nolan and M. Cheney, Microlocal Analysis of Synthetic Aperture Radar Imaging,, The Journal of Fourier Analysis and Applications, 10 (2004), 133.  doi: 10.1007/s00041-004-8008-0.  Google Scholar

[7]

H. V. Poor, An Introduction to Signal Detection and Estimation,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4757-3863-6.  Google Scholar

[8]

D. C. Montgomery, E. A. Peck and G. G. Vining, Introduction to Linear Regression Analysis,, Wiley-Interscience, (2001).   Google Scholar

[9]

S. Kay, Fundamentals of Signal Processing, vol. 1: Estimation Theory,, Prentice Hall, (1993).   Google Scholar

[10]

D. J. Rossi and A. S. Willsky, Reconstruction from projections based on detection and estimation of objects - parts i and ii: performance analysis and robustness analysis,, IEEE Trans. Acoustics, 32 (1984), 886.  doi: 10.1109/TASSP.1984.1164405.  Google Scholar

[11]

M. E. Taylor, Pseudodiferential Operators,, Princeton University Press, (1981).   Google Scholar

[12]

F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. I & II,, The University Series in Mathematics, (1980).   Google Scholar

[13]

K. Voccola, Statistical and Analytical Techniques in Synthetic Aperture Radar Imaging,, Ph.D. Thesis, (2011).   Google Scholar

[14]

K. Voccola, B. Yazici, M. Cheney and M. Ferrara, On the Relationship between the Generalized Likelihood Ratio Test and Backprojection Method for Synthetic-Aperture Radar Imaging,, SPIE Defense, (2009).   Google Scholar

[15]

H. C. Yanik, Analytic Methods for SAR Image Formation in the Presence of Noise and Clutter,, Ph.D. Thesis, (2014).   Google Scholar

[16]

B. Yazici, M. Cheney and C. E. Yarman, Synthetic-aperture inversion in the presence of noise and clutter,, Inverse Problems, 22 (2006), 1705.  doi: 10.1088/0266-5611/22/5/011.  Google Scholar

[1]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005

[2]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[3]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[4]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[5]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[6]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[7]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[10]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[11]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[16]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[17]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[20]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]