• Previous Article
    Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds
  • IPI Home
  • This Issue
  • Next Article
    Solving monotone inclusions involving parallel sums of linearly composed maximally monotone operators
August  2016, 10(3): 641-658. doi: 10.3934/ipi.2016015

The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter

1. 

8817 234th St. SW, Edmonds, WA 98026, United States

2. 

Computational and Applied Mathematics, Rice University, Houston, TX 77005, United States

Received  May 2015 Revised  May 2016 Published  August 2016

Pride (1994, Phys. Rev. B 50 15678-96) derived the governing model of electroseismic conversion, in which Maxwell's equations are coupled with Biot's equations through an electrokinetic mobility parameter. The inverse problem of electroseismic conversion was first studied by Chen and Yang (2013, Inverse Problem 29 115006). By following the construction of Complex Geometrical Optics (CGO) solutions to a matrix Schrödinger equation introduced by Ola and Somersalo (1996, SIAM J. Appl. Math. 56 No. 4 1129-1145), we analyze the recovering of conductivity, permittivity and the electrokinetic mobility parameter in Maxwell's equations with internal measurements, while allowing the magnetic permeability $\mu$ to be a variable function. We show that knowledge of two internal data sets associated with well-chosen boundary electrical sources uniquely determines these parameters. Moreover, a Lipschitz-type stability is obtained based on the same set.
Citation: Jie Chen, Maarten de Hoop. The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter. Inverse Problems & Imaging, 2016, 10 (3) : 641-658. doi: 10.3934/ipi.2016015
References:
[1]

G. Bal and G. Uhlmann, Inverse diffusion theory of photo-acoustics,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085010.  Google Scholar

[2]

G. Bal and T. Zhou, Hybrid inverse problems for a system of Maxwell's equations,, Inverse Problem, 30 (2014).  doi: 10.1088/0266-5611/30/5/055013.  Google Scholar

[3]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I-Low-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 168.  doi: 10.1121/1.1908239.  Google Scholar

[4]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II-High-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 179.  doi: 10.1121/1.1908241.  Google Scholar

[5]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. in PDE, 34 (2009), 1425.  doi: 10.1080/03605300903296272.  Google Scholar

[6]

J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data,, Inverse Problem, 28 (2012).  doi: 10.1088/0266-5611/28/11/115014.  Google Scholar

[7]

J. Chen and Y. Yang, Inverse problem of electroseismic conversion,, Inverse Problem, 29 (2013).   Google Scholar

[8]

D. Colton and L. Paivarinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,, Arch. Rational Mech. Anal., 119 (1992), 59.  doi: 10.1007/BF00376010.  Google Scholar

[9]

C. Guo and G. Bal, Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields,, Inverse Problems and Imaging, 8 (2014), 1033.  doi: 10.3934/ipi.2014.8.1033.  Google Scholar

[10]

M. W. Haartsen, Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and Its Application in Geophysical Exploration,, Ph.D. Thesis, (1995).   Google Scholar

[11]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic maxwell equations,, Duke Math. J., 157 (2011), 369.  doi: 10.1215/00127094-1272903.  Google Scholar

[12]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials,, SIAM J. Appl. Math., 56 (1996), 1129.  doi: 10.1137/S0036139995283948.  Google Scholar

[13]

P. Ola, L. Päivärinta and E Somersalo, An inverse boundary value problem in electrodynamics,, Duke Mathematical Journal, 70 (1993), 617.  doi: 10.1215/S0012-7094-93-07014-7.  Google Scholar

[14]

T. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies,, Appl. Phys. Lett., 36 (1980), 259.  doi: 10.1063/1.91445.  Google Scholar

[15]

S. R. Pride, Governing equations for the coupled electro-magnetics and acoustics of porous media,, Phys. Rev., 50 (1994), 15678.   Google Scholar

[16]

S. R. Pride and M. W. Haartsen, Electroseismic wave properties,, Journal of the Acoustical Society of America, 100 (1996), 1301.  doi: 10.1121/1.416018.  Google Scholar

[17]

M. D. Schakel, Coupled Seismic and Electromagnetic Wave Propagation,, Ph.D. thesis, (2011).   Google Scholar

[18]

A. Thompson and G. Gist, Geophysical applications of electro-kinetic conversion,, The Leading Edge, 12 (1993), 1169.   Google Scholar

[19]

A. Thompson and S. Hornbostel et. al., Field tests of electroseismic hydrocarbon detection,, Geophysics, 72 (2007).   Google Scholar

[20]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[21]

B. White, Asymptotic theory of electro-seismic prospecting,, SIAM J. Appl. Math., 65 (2005), 1443.  doi: 10.1137/040604108.  Google Scholar

[22]

K. L. Williams, An effective density fluid model for acoustic propagation in sediments derived from Biot theory,, J. Acoust. Soc. Am., 110 (2001), 2276.  doi: 10.1121/1.1412449.  Google Scholar

[23]

Z. Zhu, M. W. Haartsen and M. N. Toksöz, Experimental studies of electro-kinetic conversions in fluid-saturated bore-hole models,, Geophysics, 64 (1999), 1349.   Google Scholar

[24]

Z. Zhu and M. N. Toksöz, Cross hole seismoelectric measurements in bore-hole models with fractures,, Geophysics, 68 (2003), 1519.   Google Scholar

[25]

Z. Zhu and M. N. Toksöz, Seismoelectric and seismomagnetic measurements in fractured bore-hole models,, Geophysics, 70 (2005).   Google Scholar

show all references

References:
[1]

G. Bal and G. Uhlmann, Inverse diffusion theory of photo-acoustics,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/8/085010.  Google Scholar

[2]

G. Bal and T. Zhou, Hybrid inverse problems for a system of Maxwell's equations,, Inverse Problem, 30 (2014).  doi: 10.1088/0266-5611/30/5/055013.  Google Scholar

[3]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I-Low-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 168.  doi: 10.1121/1.1908239.  Google Scholar

[4]

M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II-High-frequency range,, Journal of the Acoustical Society of America, 28 (1956), 179.  doi: 10.1121/1.1908241.  Google Scholar

[5]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. in PDE, 34 (2009), 1425.  doi: 10.1080/03605300903296272.  Google Scholar

[6]

J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data,, Inverse Problem, 28 (2012).  doi: 10.1088/0266-5611/28/11/115014.  Google Scholar

[7]

J. Chen and Y. Yang, Inverse problem of electroseismic conversion,, Inverse Problem, 29 (2013).   Google Scholar

[8]

D. Colton and L. Paivarinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,, Arch. Rational Mech. Anal., 119 (1992), 59.  doi: 10.1007/BF00376010.  Google Scholar

[9]

C. Guo and G. Bal, Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields,, Inverse Problems and Imaging, 8 (2014), 1033.  doi: 10.3934/ipi.2014.8.1033.  Google Scholar

[10]

M. W. Haartsen, Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and Its Application in Geophysical Exploration,, Ph.D. Thesis, (1995).   Google Scholar

[11]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic maxwell equations,, Duke Math. J., 157 (2011), 369.  doi: 10.1215/00127094-1272903.  Google Scholar

[12]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials,, SIAM J. Appl. Math., 56 (1996), 1129.  doi: 10.1137/S0036139995283948.  Google Scholar

[13]

P. Ola, L. Päivärinta and E Somersalo, An inverse boundary value problem in electrodynamics,, Duke Mathematical Journal, 70 (1993), 617.  doi: 10.1215/S0012-7094-93-07014-7.  Google Scholar

[14]

T. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies,, Appl. Phys. Lett., 36 (1980), 259.  doi: 10.1063/1.91445.  Google Scholar

[15]

S. R. Pride, Governing equations for the coupled electro-magnetics and acoustics of porous media,, Phys. Rev., 50 (1994), 15678.   Google Scholar

[16]

S. R. Pride and M. W. Haartsen, Electroseismic wave properties,, Journal of the Acoustical Society of America, 100 (1996), 1301.  doi: 10.1121/1.416018.  Google Scholar

[17]

M. D. Schakel, Coupled Seismic and Electromagnetic Wave Propagation,, Ph.D. thesis, (2011).   Google Scholar

[18]

A. Thompson and G. Gist, Geophysical applications of electro-kinetic conversion,, The Leading Edge, 12 (1993), 1169.   Google Scholar

[19]

A. Thompson and S. Hornbostel et. al., Field tests of electroseismic hydrocarbon detection,, Geophysics, 72 (2007).   Google Scholar

[20]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[21]

B. White, Asymptotic theory of electro-seismic prospecting,, SIAM J. Appl. Math., 65 (2005), 1443.  doi: 10.1137/040604108.  Google Scholar

[22]

K. L. Williams, An effective density fluid model for acoustic propagation in sediments derived from Biot theory,, J. Acoust. Soc. Am., 110 (2001), 2276.  doi: 10.1121/1.1412449.  Google Scholar

[23]

Z. Zhu, M. W. Haartsen and M. N. Toksöz, Experimental studies of electro-kinetic conversions in fluid-saturated bore-hole models,, Geophysics, 64 (1999), 1349.   Google Scholar

[24]

Z. Zhu and M. N. Toksöz, Cross hole seismoelectric measurements in bore-hole models with fractures,, Geophysics, 68 (2003), 1519.   Google Scholar

[25]

Z. Zhu and M. N. Toksöz, Seismoelectric and seismomagnetic measurements in fractured bore-hole models,, Geophysics, 70 (2005).   Google Scholar

[1]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[2]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[8]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[13]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[14]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[15]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[18]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[19]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[20]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]