-
Previous Article
Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds
- IPI Home
- This Issue
-
Next Article
Solving monotone inclusions involving parallel sums of linearly composed maximally monotone operators
The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter
1. | 8817 234th St. SW, Edmonds, WA 98026, United States |
2. | Computational and Applied Mathematics, Rice University, Houston, TX 77005, United States |
References:
[1] |
G. Bal and G. Uhlmann, Inverse diffusion theory of photo-acoustics, Inverse Problems, 26 (2010), 085010, 20pp.
doi: 10.1088/0266-5611/26/8/085010. |
[2] |
G. Bal and T. Zhou, Hybrid inverse problems for a system of Maxwell's equations, Inverse Problem, 30 (2014), 055013, 17pp.
doi: 10.1088/0266-5611/30/5/055013. |
[3] |
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I-Low-frequency range, Journal of the Acoustical Society of America, 28 (1956), 168-178.
doi: 10.1121/1.1908239. |
[4] |
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II-High-frequency range, Journal of the Acoustical Society of America, 28 (1956), 179-191.
doi: 10.1121/1.1908241. |
[5] |
P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data, Comm. in PDE, 34 (2009), 1425-1464.
doi: 10.1080/03605300903296272. |
[6] |
J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data, Inverse Problem, 28 (2012), 115014, 15pp.
doi: 10.1088/0266-5611/28/11/115014. |
[7] |
J. Chen and Y. Yang, Inverse problem of electroseismic conversion, Inverse Problem, 29 (2013), 115006, 15pp. |
[8] |
D. Colton and L. Paivarinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Rational Mech. Anal., 119 (1992), 59-70.
doi: 10.1007/BF00376010. |
[9] |
C. Guo and G. Bal, Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields, Inverse Problems and Imaging, 8 (2014), 1033-1051.
doi: 10.3934/ipi.2014.8.1033. |
[10] |
M. W. Haartsen, Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and Its Application in Geophysical Exploration, Ph.D. Thesis, Massachusetts Institute of Technology, 1995. |
[11] |
C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic maxwell equations, Duke Math. J., 157 (2011), 369-419.
doi: 10.1215/00127094-1272903. |
[12] |
P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials, SIAM J. Appl. Math., 56 (1996), 1129-1145.
doi: 10.1137/S0036139995283948. |
[13] |
P. Ola, L. Päivärinta and E Somersalo, An inverse boundary value problem in electrodynamics, Duke Mathematical Journal, 70 (1993), 617-653.
doi: 10.1215/S0012-7094-93-07014-7. |
[14] |
T. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett., 36 (1980), 259-261.
doi: 10.1063/1.91445. |
[15] |
S. R. Pride, Governing equations for the coupled electro-magnetics and acoustics of porous media, Phys. Rev., 50 (1994), 15678-15696. |
[16] |
S. R. Pride and M. W. Haartsen, Electroseismic wave properties, Journal of the Acoustical Society of America, 100 (1996), 1301-1315.
doi: 10.1121/1.416018. |
[17] |
M. D. Schakel, Coupled Seismic and Electromagnetic Wave Propagation, Ph.D. thesis, de Technische Universiteit Delft, 2011. |
[18] |
A. Thompson and G. Gist, Geophysical applications of electro-kinetic conversion, The Leading Edge, 12 (1993), 1169-1173. |
[19] |
A. Thompson and S. Hornbostel et. al., Field tests of electroseismic hydrocarbon detection, Geophysics, 72 (2007), N1-N9. |
[20] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
doi: 10.2307/1971291. |
[21] |
B. White, Asymptotic theory of electro-seismic prospecting, SIAM J. Appl. Math., 65 (2005), 1443-1462.
doi: 10.1137/040604108. |
[22] |
K. L. Williams, An effective density fluid model for acoustic propagation in sediments derived from Biot theory, J. Acoust. Soc. Am., 110 (2001), 2276-2281.
doi: 10.1121/1.1412449. |
[23] |
Z. Zhu, M. W. Haartsen and M. N. Toksöz, Experimental studies of electro-kinetic conversions in fluid-saturated bore-hole models, Geophysics, 64 (1999), 1349-1356. |
[24] |
Z. Zhu and M. N. Toksöz, Cross hole seismoelectric measurements in bore-hole models with fractures, Geophysics, 68 (2003), 1519-1524. |
[25] |
Z. Zhu and M. N. Toksöz, Seismoelectric and seismomagnetic measurements in fractured bore-hole models, Geophysics, 70 (2005), F45-F51. |
show all references
References:
[1] |
G. Bal and G. Uhlmann, Inverse diffusion theory of photo-acoustics, Inverse Problems, 26 (2010), 085010, 20pp.
doi: 10.1088/0266-5611/26/8/085010. |
[2] |
G. Bal and T. Zhou, Hybrid inverse problems for a system of Maxwell's equations, Inverse Problem, 30 (2014), 055013, 17pp.
doi: 10.1088/0266-5611/30/5/055013. |
[3] |
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. I-Low-frequency range, Journal of the Acoustical Society of America, 28 (1956), 168-178.
doi: 10.1121/1.1908239. |
[4] |
M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II-High-frequency range, Journal of the Acoustical Society of America, 28 (1956), 179-191.
doi: 10.1121/1.1908241. |
[5] |
P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data, Comm. in PDE, 34 (2009), 1425-1464.
doi: 10.1080/03605300903296272. |
[6] |
J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data, Inverse Problem, 28 (2012), 115014, 15pp.
doi: 10.1088/0266-5611/28/11/115014. |
[7] |
J. Chen and Y. Yang, Inverse problem of electroseismic conversion, Inverse Problem, 29 (2013), 115006, 15pp. |
[8] |
D. Colton and L. Paivarinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Rational Mech. Anal., 119 (1992), 59-70.
doi: 10.1007/BF00376010. |
[9] |
C. Guo and G. Bal, Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields, Inverse Problems and Imaging, 8 (2014), 1033-1051.
doi: 10.3934/ipi.2014.8.1033. |
[10] |
M. W. Haartsen, Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and Its Application in Geophysical Exploration, Ph.D. Thesis, Massachusetts Institute of Technology, 1995. |
[11] |
C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic maxwell equations, Duke Math. J., 157 (2011), 369-419.
doi: 10.1215/00127094-1272903. |
[12] |
P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials, SIAM J. Appl. Math., 56 (1996), 1129-1145.
doi: 10.1137/S0036139995283948. |
[13] |
P. Ola, L. Päivärinta and E Somersalo, An inverse boundary value problem in electrodynamics, Duke Mathematical Journal, 70 (1993), 617-653.
doi: 10.1215/S0012-7094-93-07014-7. |
[14] |
T. Plona, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl. Phys. Lett., 36 (1980), 259-261.
doi: 10.1063/1.91445. |
[15] |
S. R. Pride, Governing equations for the coupled electro-magnetics and acoustics of porous media, Phys. Rev., 50 (1994), 15678-15696. |
[16] |
S. R. Pride and M. W. Haartsen, Electroseismic wave properties, Journal of the Acoustical Society of America, 100 (1996), 1301-1315.
doi: 10.1121/1.416018. |
[17] |
M. D. Schakel, Coupled Seismic and Electromagnetic Wave Propagation, Ph.D. thesis, de Technische Universiteit Delft, 2011. |
[18] |
A. Thompson and G. Gist, Geophysical applications of electro-kinetic conversion, The Leading Edge, 12 (1993), 1169-1173. |
[19] |
A. Thompson and S. Hornbostel et. al., Field tests of electroseismic hydrocarbon detection, Geophysics, 72 (2007), N1-N9. |
[20] |
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
doi: 10.2307/1971291. |
[21] |
B. White, Asymptotic theory of electro-seismic prospecting, SIAM J. Appl. Math., 65 (2005), 1443-1462.
doi: 10.1137/040604108. |
[22] |
K. L. Williams, An effective density fluid model for acoustic propagation in sediments derived from Biot theory, J. Acoust. Soc. Am., 110 (2001), 2276-2281.
doi: 10.1121/1.1412449. |
[23] |
Z. Zhu, M. W. Haartsen and M. N. Toksöz, Experimental studies of electro-kinetic conversions in fluid-saturated bore-hole models, Geophysics, 64 (1999), 1349-1356. |
[24] |
Z. Zhu and M. N. Toksöz, Cross hole seismoelectric measurements in bore-hole models with fractures, Geophysics, 68 (2003), 1519-1524. |
[25] |
Z. Zhu and M. N. Toksöz, Seismoelectric and seismomagnetic measurements in fractured bore-hole models, Geophysics, 70 (2005), F45-F51. |
[1] |
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159 |
[2] |
Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607 |
[3] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[4] |
Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754 |
[5] |
J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485 |
[6] |
Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793 |
[7] |
W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431 |
[8] |
Jiann-Sheng Jiang, Chi-Kun Lin, Chi-Hua Liu. Homogenization of the Maxwell's system for conducting media. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 91-107. doi: 10.3934/dcdsb.2008.10.91 |
[9] |
Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257 |
[10] |
Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184 |
[11] |
Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations and Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018 |
[12] |
Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305 |
[13] |
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181 |
[14] |
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473 |
[15] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117 |
[16] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[17] |
Hao Wang, Wei Yang, Yunqing Huang. An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28 (2) : 961-976. doi: 10.3934/era.2020051 |
[18] |
B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems and Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405 |
[19] |
Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547 |
[20] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]