• Previous Article
    An efficient projection method for nonlinear inverse problems with sparsity constraints
  • IPI Home
  • This Issue
  • Next Article
    The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter
August  2016, 10(3): 659-688. doi: 10.3934/ipi.2016016

Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds

1. 

Département de Mathématiques, Université de Cergy-Pontoise, UMR CNRS 8088, 2 Av. Adolphe Chauvin, 95302 Cergy-Pontoise cedex, France

2. 

Département de Mathématiques, Université de Nantes, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 03, France, France

Received  January 2015 Revised  October 2015 Published  August 2016

In this paper, we adapt the well-known local uniqueness results of Borg-Marchenko type in the inverse problems for one dimensional Schrödinger equation to prove local uniqueness results in the setting of inverse metric problems. More specifically, we consider a class of spherically symmetric manifolds having two asymptotically hyperbolic ends and study the scattering properties of massless Dirac waves evolving on such manifolds. Using the spherical symmetry of the model, the stationary scattering is encoded by a countable family of one-dimensional Dirac equations. This allows us to define the corresponding transmission coefficients $T(\lambda,n)$ and reflection coefficients $L(\lambda,n)$ and $R(\lambda,n)$ of a Dirac wave having a fixed energy $\lambda$ and angular momentum $n$. For instance, the reflection coefficients $L(\lambda,n)$ correspond to the scattering experiment in which a wave is sent from the left end in the remote past and measured in the same left end in the future. The main result of this paper is an inverse uniqueness result local in nature. Namely, we prove that for a fixed $\lambda \not=0$, the knowledge of the reflection coefficients $L(\lambda,n)$ (resp. $R(\lambda,n)$) - up to a precise error term of the form $O(e^{-2nB})$ with $B>0$ - determines the manifold in a neighbourhood of the left (resp. right) end, the size of this neighbourhood depending on the magnitude $B$ of the error term. The crucial ingredients in the proof of this result are the Complex Angular Momentum method as well as some useful uniqueness results for Laplace transforms.
Citation: Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems & Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016
References:
[1]

T. Aktosun, M. Klaus and C. van der Mee, Direct and inverse scattering for selfadjoint Hamiltonian systems on the line,, Integr. Equa. Oper. Theory, 38 (2000), 129.  doi: 10.1007/BF01200121.  Google Scholar

[2]

C. Bennewitz, A proof of the local Borg-Marchenko Theorem,, Comm. Math. Phys., 218 (2001), 131.  doi: 10.1007/s002200100384.  Google Scholar

[3]

R. P. Boas, Entire Functions,, Academic Press, (1954).   Google Scholar

[4]

D. Borthwick and P. A. Perry, Inverse scattering results for manifolds hyperbolic near infinity,, J. of Geom. Anal., 21 (2001), 305.  doi: 10.1007/s12220-010-9149-9.  Google Scholar

[5]

J. M. Cohen and R. T. Powers, The general relativistic hydrogen atom,, Comm. Math. Phys., 86 (1982), 69.  doi: 10.1007/BF01205662.  Google Scholar

[6]

T. Daudé, Time-dependent scattering theory for massive charged Dirac fields by a Reissner-Nordström black hole,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3499403.  Google Scholar

[7]

T. Daudé, N. Kamran and F. Nicoleau, Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces,, to appear in Inverse Problems, ().   Google Scholar

[8]

T. Daudé and F. Nicoleau, Inverse scattering in (de Sitter)-Reissner-Nordström black hole spacetimes,, Rev. Math. Phys., 22 (2010), 431.  doi: 10.1142/S0129055X10004004.  Google Scholar

[9]

T. Daudé and F. Nicoleau, Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes,, Annales Henri Poincaré, 12 (2011), 1.  doi: 10.1007/s00023-010-0069-9.  Google Scholar

[10]

G. Freiling and V. Yurko, Inverse problems for differential operators with singular boundary conditions,, Math. Nachr., 278 (2005), 1561.  doi: 10.1002/mana.200410322.  Google Scholar

[11]

F. Gesztesy and B. Simon, On local Borg-Marchenko uniqueness results,, Comm. Math. Phys., 211 (2005), 273.  doi: 10.1007/s002200050812.  Google Scholar

[12]

M. Horváth, Partial identification of the potential from phase shifts,, J. Math. Anal. Appl., 380 (2011), 726.  doi: 10.1016/j.jmaa.2010.10.071.  Google Scholar

[13]

H. Isozaki and J. Kurylev, Introduction to spectral theory and inverse problems on asymptotically hyperbolic manifolds,, MSJ Memoirs, (2014).  doi: 10.1142/e040.  Google Scholar

[14]

M. S. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds,, Acta Mathematica, 184 (2000), 41.  doi: 10.1007/BF02392781.  Google Scholar

[15]

K. Lake, Reissner-Nordström-de Sitter metric, the third law, and cosmic censorship,, Phys. Rev. D., 19 (1979), 421.  doi: 10.1103/PhysRevD.19.421.  Google Scholar

[16]

B. Y. Levin, Lectures on Entire Functions,, Translations of Mathematical Monograph, 150 (1996).   Google Scholar

[17]

F. Melnik, Scattering on Reissner-Nordström metric for massive charged spin $\frac{1}{2}$ fields,, Annales Henri Poincaré, 4 (2003), 813.  doi: 10.1007/s00023-003-0148-2.  Google Scholar

[18]

J.-P. Nicolas, Scattering of linear Dirac fields by a spherically symmetric black hole,, Annales Institut Henri Poincaré, 62 (1995), 145.   Google Scholar

[19]

A. G. Ramm, An Inverse Scattering Problem with part of the Fixed-Energy Phase shifts,, Comm. Math. Phys., 207 (1999), 231.  doi: 10.1007/s002200050725.  Google Scholar

[20]

T. Regge, Introduction to complex orbital momenta,, Nuevo Cimento, 14 (1959), 951.  doi: 10.1007/BF02728177.  Google Scholar

[21]

A. Sá Barreto, Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds,, Duke Math. Journal, 129 (2005), 407.  doi: 10.1215/S0012-7094-05-12931-3.  Google Scholar

[22]

W. Rudin, Real and Complex Analysis, Third edition,, McGraw-Hill Book Company, (1987).   Google Scholar

[23]

B. Simon, A new approach to inverse spectral theory, I. fundamental formalism,, Annals of Math., 150 (1999), 1029.  doi: 10.2307/121061.  Google Scholar

[24]

G. Teschl, Mathematical Methods in Quantum Mechanics,, Graduate Studies in Mathematics, 99 (2009).  doi: 10.1090/gsm/099.  Google Scholar

[25]

B. Thaller, The Dirac Equation,, Texts and Monographs in Physics, (1992).  doi: 10.1007/978-3-662-02753-0.  Google Scholar

[26]

R. M. Wald, General Relativity,, The University of Chicago Press, (1984).  doi: 10.7208/chicago/9780226870373.001.0001.  Google Scholar

show all references

References:
[1]

T. Aktosun, M. Klaus and C. van der Mee, Direct and inverse scattering for selfadjoint Hamiltonian systems on the line,, Integr. Equa. Oper. Theory, 38 (2000), 129.  doi: 10.1007/BF01200121.  Google Scholar

[2]

C. Bennewitz, A proof of the local Borg-Marchenko Theorem,, Comm. Math. Phys., 218 (2001), 131.  doi: 10.1007/s002200100384.  Google Scholar

[3]

R. P. Boas, Entire Functions,, Academic Press, (1954).   Google Scholar

[4]

D. Borthwick and P. A. Perry, Inverse scattering results for manifolds hyperbolic near infinity,, J. of Geom. Anal., 21 (2001), 305.  doi: 10.1007/s12220-010-9149-9.  Google Scholar

[5]

J. M. Cohen and R. T. Powers, The general relativistic hydrogen atom,, Comm. Math. Phys., 86 (1982), 69.  doi: 10.1007/BF01205662.  Google Scholar

[6]

T. Daudé, Time-dependent scattering theory for massive charged Dirac fields by a Reissner-Nordström black hole,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3499403.  Google Scholar

[7]

T. Daudé, N. Kamran and F. Nicoleau, Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces,, to appear in Inverse Problems, ().   Google Scholar

[8]

T. Daudé and F. Nicoleau, Inverse scattering in (de Sitter)-Reissner-Nordström black hole spacetimes,, Rev. Math. Phys., 22 (2010), 431.  doi: 10.1142/S0129055X10004004.  Google Scholar

[9]

T. Daudé and F. Nicoleau, Inverse scattering at fixed energy in de Sitter-Reissner-Nordström black holes,, Annales Henri Poincaré, 12 (2011), 1.  doi: 10.1007/s00023-010-0069-9.  Google Scholar

[10]

G. Freiling and V. Yurko, Inverse problems for differential operators with singular boundary conditions,, Math. Nachr., 278 (2005), 1561.  doi: 10.1002/mana.200410322.  Google Scholar

[11]

F. Gesztesy and B. Simon, On local Borg-Marchenko uniqueness results,, Comm. Math. Phys., 211 (2005), 273.  doi: 10.1007/s002200050812.  Google Scholar

[12]

M. Horváth, Partial identification of the potential from phase shifts,, J. Math. Anal. Appl., 380 (2011), 726.  doi: 10.1016/j.jmaa.2010.10.071.  Google Scholar

[13]

H. Isozaki and J. Kurylev, Introduction to spectral theory and inverse problems on asymptotically hyperbolic manifolds,, MSJ Memoirs, (2014).  doi: 10.1142/e040.  Google Scholar

[14]

M. S. Joshi and A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds,, Acta Mathematica, 184 (2000), 41.  doi: 10.1007/BF02392781.  Google Scholar

[15]

K. Lake, Reissner-Nordström-de Sitter metric, the third law, and cosmic censorship,, Phys. Rev. D., 19 (1979), 421.  doi: 10.1103/PhysRevD.19.421.  Google Scholar

[16]

B. Y. Levin, Lectures on Entire Functions,, Translations of Mathematical Monograph, 150 (1996).   Google Scholar

[17]

F. Melnik, Scattering on Reissner-Nordström metric for massive charged spin $\frac{1}{2}$ fields,, Annales Henri Poincaré, 4 (2003), 813.  doi: 10.1007/s00023-003-0148-2.  Google Scholar

[18]

J.-P. Nicolas, Scattering of linear Dirac fields by a spherically symmetric black hole,, Annales Institut Henri Poincaré, 62 (1995), 145.   Google Scholar

[19]

A. G. Ramm, An Inverse Scattering Problem with part of the Fixed-Energy Phase shifts,, Comm. Math. Phys., 207 (1999), 231.  doi: 10.1007/s002200050725.  Google Scholar

[20]

T. Regge, Introduction to complex orbital momenta,, Nuevo Cimento, 14 (1959), 951.  doi: 10.1007/BF02728177.  Google Scholar

[21]

A. Sá Barreto, Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds,, Duke Math. Journal, 129 (2005), 407.  doi: 10.1215/S0012-7094-05-12931-3.  Google Scholar

[22]

W. Rudin, Real and Complex Analysis, Third edition,, McGraw-Hill Book Company, (1987).   Google Scholar

[23]

B. Simon, A new approach to inverse spectral theory, I. fundamental formalism,, Annals of Math., 150 (1999), 1029.  doi: 10.2307/121061.  Google Scholar

[24]

G. Teschl, Mathematical Methods in Quantum Mechanics,, Graduate Studies in Mathematics, 99 (2009).  doi: 10.1090/gsm/099.  Google Scholar

[25]

B. Thaller, The Dirac Equation,, Texts and Monographs in Physics, (1992).  doi: 10.1007/978-3-662-02753-0.  Google Scholar

[26]

R. M. Wald, General Relativity,, The University of Chicago Press, (1984).  doi: 10.7208/chicago/9780226870373.001.0001.  Google Scholar

[1]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[2]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[7]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[8]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[9]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[10]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[14]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[15]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (4)

[Back to Top]