-
Previous Article
Reconstructing a function on the sphere from its means along vertical slices
- IPI Home
- This Issue
-
Next Article
Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds
An efficient projection method for nonlinear inverse problems with sparsity constraints
1. | School of Mathematical Sciences, Key Laboratory for NSLSCS of Jiangsu Province, Nanjing Normal University, Nanjing 210023, China, China, China |
2. | School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore |
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer-Verlag, (2000).
doi: 10.1007/978-1-4612-1394-9. |
[2] |
K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method,, Comput. Optim. Appl., 42 (2009), 173.
doi: 10.1007/s10589-007-9083-3. |
[3] |
X. J. Cai, G. Y. Gu and B. S. He, A proximal point algorithm revisit on the alternating direction method of multipliers,, Sci. China Math., 56 (2013), 2179.
doi: 10.1007/s11425-013-4683-0. |
[4] |
I. Daubechies, M. Defrise and C. DeMol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Commun. Pure Appl. Math., 57 (2004), 1413.
doi: 10.1002/cpa.20042. |
[5] |
I. Daubechies, M. Fornasier and I. Loris, Accelerated projected gradient methods for linear inverse problems with sparsity constraints,, J. Fourier Anal. Appl., 14 (2008), 764.
doi: 10.1007/s00041-008-9039-8. |
[6] |
I. Daubechies, G. Teschke and L. Vese, Iteratively solving linear inverse problems with general convex constraints,, Inverse Problems Imag., 1 (2007), 29.
doi: 10.3934/ipi.2007.1.29. |
[7] |
I. Daubechies, G. Teschke and L. Vese, On some iterative concepts for image restoration,, Adv. Imag. Electron Phys., 150 (2008), 1.
doi: 10.1016/S1076-5670(07)00001-8. |
[8] |
Y. C. Eldar, T. G. Dvorkind and E. Matusiak, Nonlinear and non-ideal sampling: Theory and methods,, IEEE Trans. Signal Process., 56 (2008), 5874.
doi: 10.1109/TSP.2008.929872. |
[9] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Springer, (1996).
doi: 10.1007/978-94-009-1740-8. |
[10] |
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II,, Springer-Verlag, (2003).
|
[11] |
M. Fornasier, Domain decomposition methods for linear inverse problems with sparsity constraints,, Inverse Problems, 23 (2007), 2505.
doi: 10.1088/0266-5611/23/6/014. |
[12] |
M. A. T. Figueiredo, R. D. Nowak and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,, IEEE J. Sel. Top. Signal Process., 1 (2007), 586.
doi: 10.1109/JSTSP.2007.910281. |
[13] |
M. Fornasier and H. Rauhut, Recovery algorithms for vector valued data with joint sparsity constraint,, SIAM J. Numer. Anal., 46 (2008), 577.
doi: 10.1137/0606668909. |
[14] |
Z. L. Ge, G. Qian and D. R. Han, Global convergence of an inexact operator splitting method for monotone variational inequalities,, J. Ind. Man. Optim., 7 (2011), 1013.
doi: 10.3934/jimo.2011.7.1013. |
[15] |
B. S. He, H. Yang, Q. Meng and D. R. Han, Modified Goldstein-Levitin-Polyak projection method for asymmetric strong monotone variational inequality,, J. Optim. Theory Appl., 112 (2002), 129.
doi: 10.1023/A:1013048729944. |
[16] |
T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/5/055002. |
[17] |
B. Kaltenbacher, F. Schöpfer and T. Schuster, Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/6/065003. |
[18] |
R. Ramlau and G. Teschke, Tikhonov replacement functionals for iteratively solving nonlinear operator equations,, Inverse Problems, 21 (2005), 1571.
doi: 10.1088/0266-5611/21/5/005. |
[19] |
R. Ramlau and G. Teschke, A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints,, Numer. Math., 104 (2006), 177.
doi: 10.1007/s00211-006-0016-3. |
[20] |
G. Teschke, Multi-frame representations in linear inverse problems with mixed multi-constraints,, Appl. Comput. Harmon. Anal., 22 (2007), 43.
doi: 10.1016/j.acha.2006.05.003. |
[21] |
G. Teschke and C. Borries, Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/2/025007. |
[22] |
E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basic pursuit solutions,, SIAM J. Sci. Comput., 31 (2008), 890.
doi: 10.1137/080714488. |
[23] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications III,, Springer, (1985).
doi: 10.1007/978-1-4612-5020-3. |
[24] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I,, Springer, (1986).
doi: 10.1007/978-1-4612-4838-5. |
[25] |
W. X. Zhang, D. R. Han and Z. B. Li, A self-adaptive projection method for solving the multiple-sets split feasibility problem,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/11/115001. |
[26] |
T. Zhu and Z. Yu, A simple proof for some important properties of the projection mapping,, Mathematical Inequalities and Applications, 7 (2004), 453.
doi: 10.7153/mia-07-45. |
show all references
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems,, Springer-Verlag, (2000).
doi: 10.1007/978-1-4612-1394-9. |
[2] |
K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method,, Comput. Optim. Appl., 42 (2009), 173.
doi: 10.1007/s10589-007-9083-3. |
[3] |
X. J. Cai, G. Y. Gu and B. S. He, A proximal point algorithm revisit on the alternating direction method of multipliers,, Sci. China Math., 56 (2013), 2179.
doi: 10.1007/s11425-013-4683-0. |
[4] |
I. Daubechies, M. Defrise and C. DeMol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Commun. Pure Appl. Math., 57 (2004), 1413.
doi: 10.1002/cpa.20042. |
[5] |
I. Daubechies, M. Fornasier and I. Loris, Accelerated projected gradient methods for linear inverse problems with sparsity constraints,, J. Fourier Anal. Appl., 14 (2008), 764.
doi: 10.1007/s00041-008-9039-8. |
[6] |
I. Daubechies, G. Teschke and L. Vese, Iteratively solving linear inverse problems with general convex constraints,, Inverse Problems Imag., 1 (2007), 29.
doi: 10.3934/ipi.2007.1.29. |
[7] |
I. Daubechies, G. Teschke and L. Vese, On some iterative concepts for image restoration,, Adv. Imag. Electron Phys., 150 (2008), 1.
doi: 10.1016/S1076-5670(07)00001-8. |
[8] |
Y. C. Eldar, T. G. Dvorkind and E. Matusiak, Nonlinear and non-ideal sampling: Theory and methods,, IEEE Trans. Signal Process., 56 (2008), 5874.
doi: 10.1109/TSP.2008.929872. |
[9] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems,, Springer, (1996).
doi: 10.1007/978-94-009-1740-8. |
[10] |
F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Volumes I and II,, Springer-Verlag, (2003).
|
[11] |
M. Fornasier, Domain decomposition methods for linear inverse problems with sparsity constraints,, Inverse Problems, 23 (2007), 2505.
doi: 10.1088/0266-5611/23/6/014. |
[12] |
M. A. T. Figueiredo, R. D. Nowak and S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems,, IEEE J. Sel. Top. Signal Process., 1 (2007), 586.
doi: 10.1109/JSTSP.2007.910281. |
[13] |
M. Fornasier and H. Rauhut, Recovery algorithms for vector valued data with joint sparsity constraint,, SIAM J. Numer. Anal., 46 (2008), 577.
doi: 10.1137/0606668909. |
[14] |
Z. L. Ge, G. Qian and D. R. Han, Global convergence of an inexact operator splitting method for monotone variational inequalities,, J. Ind. Man. Optim., 7 (2011), 1013.
doi: 10.3934/jimo.2011.7.1013. |
[15] |
B. S. He, H. Yang, Q. Meng and D. R. Han, Modified Goldstein-Levitin-Polyak projection method for asymmetric strong monotone variational inequality,, J. Optim. Theory Appl., 112 (2002), 129.
doi: 10.1023/A:1013048729944. |
[16] |
T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/5/055002. |
[17] |
B. Kaltenbacher, F. Schöpfer and T. Schuster, Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/6/065003. |
[18] |
R. Ramlau and G. Teschke, Tikhonov replacement functionals for iteratively solving nonlinear operator equations,, Inverse Problems, 21 (2005), 1571.
doi: 10.1088/0266-5611/21/5/005. |
[19] |
R. Ramlau and G. Teschke, A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints,, Numer. Math., 104 (2006), 177.
doi: 10.1007/s00211-006-0016-3. |
[20] |
G. Teschke, Multi-frame representations in linear inverse problems with mixed multi-constraints,, Appl. Comput. Harmon. Anal., 22 (2007), 43.
doi: 10.1016/j.acha.2006.05.003. |
[21] |
G. Teschke and C. Borries, Accelerated projected steepest descent method for nonlinear inverse problems with sparsity constraints,, Inverse Problems, 26 (2010).
doi: 10.1088/0266-5611/26/2/025007. |
[22] |
E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basic pursuit solutions,, SIAM J. Sci. Comput., 31 (2008), 890.
doi: 10.1137/080714488. |
[23] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications III,, Springer, (1985).
doi: 10.1007/978-1-4612-5020-3. |
[24] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications I,, Springer, (1986).
doi: 10.1007/978-1-4612-4838-5. |
[25] |
W. X. Zhang, D. R. Han and Z. B. Li, A self-adaptive projection method for solving the multiple-sets split feasibility problem,, Inverse Problems, 25 (2009).
doi: 10.1088/0266-5611/25/11/115001. |
[26] |
T. Zhu and Z. Yu, A simple proof for some important properties of the projection mapping,, Mathematical Inequalities and Applications, 7 (2004), 453.
doi: 10.7153/mia-07-45. |
[1] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[2] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[3] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[4] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[5] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[6] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[7] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[8] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[9] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[10] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[11] |
Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 |
[12] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[13] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[14] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[15] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[16] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[17] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[18] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[19] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074 |
[20] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]