Citation: |
[1] |
F. Assémat, E. Gendron and F. Hammer, The falcon concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy-principles and performance on an 8-m telescope, Monthly Notices of the Royal Astronomical Society, 376 (2007), 287-312. |
[2] |
J. Barzilai and J. Borwein, Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.doi: 10.1093/imanum/8.1.141. |
[3] |
C. Béchet, M. L. Louarn, R. Clare, M. Tallon, I. Tallon-Bosc and E. Thiébaut, Closed-loop ground layer adaptive optics simulations with elongated spots: Impact of modeling noise correlations, in 1st AO4ELT conference - Adaptive Optics for Extremely Large Telescopes, 2010, 03004-03009, URL http://dx.doi.org/10.1051/ao4elt/201003004. |
[4] |
C. Béchet, M. Tallon, I. Tallon-Bosc, Éric Thiébaut, M. L. Louarn and R. M. Clare, Optimal reconstruction for closed-loop ground-layer adaptive optics with elongated spots, J. Opt. Soc. Am. A, 27 (2010), A1-A8, URL http://josaa.osa.org/abstract.cfm?URI=josaa-27-11-A1. |
[5] |
E. Brunner, C. BÉchet and M. Tallon, Optimal projection of reconstructed layers onto deformable mirrors with fractal iterative method for ao tomography, in SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics, 847 (2012), 84475I-84475I.doi: 10.1117/12.926809. |
[6] |
B. Ellerbroek and C. Vogel, Simulations of closed-loop wavefront reconstruction for multiconjugate adaptive optics on giant telescopes, Proc. SPIE, 5169 (2003), 206-217.doi: 10.1117/12.506580. |
[7] |
B. Ellerbroek, Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques, J. Opt. Soc. Am., 19 (2002), 1803-1816.doi: 10.1364/JOSAA.19.001803. |
[8] |
B. Ellerbroek and C. Vogel, Inverse problems in astronomical adaptive optics, Inverse Problems, 25 (2009), 063001, 37pp.doi: 10.1088/0266-5611/25/6/063001. |
[9] |
M. Eslitzbichler, C. Pechstein and R. Ramlau, An h1-kaczmarz reconstructor for atmospheric tomography, Journal of Inverse and Ill-Posed Problems, 21 (2013), 431-450.doi: 10.1515/jip-2013-0007. |
[10] |
T. Fusco, J.-M. Conan, G. Rousset, L. Mugnier and V. Michau, Optimal wave-front reconstruction strategies for multi conjugate adaptive optics, J. Opt. Soc. Am. A, 18 (2001), 2527-2538. |
[11] |
D. Gavel, Tomography for multiconjugate adaptive optics systems using laser guide stars, SPIE Astronomical Telescopes and Instrumentation, 5490 (2004), 1356-1373.doi: 10.1117/12.552402. |
[12] |
L. Gilles and B. Ellerbroek, Split atmospheric tomography using laser and natural guide stars, J. Opt. Soc. Am., 25 (2008), 2427-2435.doi: 10.1364/JOSAA.25.002427. |
[13] |
L. Gilles, C. Vogel and B. Ellebroek, Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction, J. Opt. Soc. Am. A, 19 (2002), 1817-1822.doi: 10.1364/JOSAA.19.001817. |
[14] |
T. Helin and M. Yudytskiy, Wavelet methods in multi-conjugate adaptive optics, Inverse Problems, 29 (2013), 085003, 18pp, URL http://stacks.iop.org/0266-5611/29/i=8/a=085003.doi: 10.1088/0266-5611/29/8/085003. |
[15] |
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, vol. 160 of Applied Mathematical Sciences, Springer Science+Business Media, Inc, 2005. |
[16] |
M. Le Louarn, C. Verinaud and V. Korkiakoski, Simulation of mcao on (extremely) large telescopes, Comptes Rendus Physique, 6 (2005), 1070-1080.doi: 10.1016/j.crhy.2005.10.004. |
[17] |
M. Le Louarn, C. Vérinaud, V. Korkiakoski, N. Hubin and E. Marchetti, Adaptive optics simulations for the european extremely large telescope, in SPIE Astronomical Telescopes+ Instrumentation, International Society for Optics and Photonics, 6272 (2006), 627234-627234.doi: 10.1117/12.670187. |
[18] |
A. Neubauer, On the ill-posedness and convergence of the Shack-Hartmann based wavefront reconstruction, J. Inv. Ill-Posed Problems, 18 (2010), 551-576.doi: 10.1515/JIIP.2010.025. |
[19] |
A. Neubauer, A new cumulative wavefront reconstructor for the Shack-Hartmann sensor, J. Inv. Ill-Posed Problems, 21 (2013), 451-476.doi: 10.1515/jip-2013-0003. |
[20] |
D. W. Phillion and K. Baker, Two-sided pyramid wavefront sensor in the direct phase mode, Proc. SPIE, 6272 (2006), 627228.doi: 10.1117/12.671961. |
[21] |
L. Poyneer, D. Gavel and J. Brase, Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform, J. Opt. Soc. Am. A, 19 (2002), 2100-2111.doi: 10.1364/JOSAA.19.002100. |
[22] |
F. Quirós-Pacheco, C. Correia and S. Esposito, Fourier transform-wavefront reconstruction for the pyramid wavefront sensor, in 1st AO4ELT conference - Adaptive Optics for Extremely Large Telescopes, 2010, 07005-07010. |
[23] |
R. Ramlau, A. Obereder, M. Rosensteiner and D. Saxenhuber, Efficient iterative tip/tilt reconstruction for atmospheric tomography, Inverse Problems in Science and Engineering, 22 (2014), 1345-1366.doi: 10.1080/17415977.2013.873534. |
[24] |
R. Ramlau and M. Rosensteiner, An efficient solution to the atmospheric turbulence tomography problem using Kaczmarz iteration, Inverse Problems, 28 (2012), 095004, 23pp.doi: 10.1088/0266-5611/28/9/095004. |
[25] |
R. Ramlau, D. Saxenhuber and M. Yudytskiy, Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm, in Proc. SPIE, 9148 (2014), 91480Q.doi: 10.1117/12.2057379. |
[26] |
F. Rigaut, B. Ellerbroek and R. Flicker, Principles, limitations and performance of multiconjugate adaptive optics, Proc. SPIE, 4007 (2000), 1022-1031. |
[27] |
F. Roddier, The effects of atmospheric turbulence in optical astronomy, Progress in Optics, 19 (1981), 281-376.doi: 10.1016/S0079-6638(08)70204-X. |
[28] |
F. Roddier, Adaptive Optics in Astronomy, Cambridge, U.K. ; New York : Cambridge University Press, Cambridge, 1999.doi: 10.1017/CBO9780511525179. |
[29] |
M. C. Roggemann and B. Welsh, Imaging Through Turbulence, CRC Press laser and optical science and technology series, CRC Press, 1996. |
[30] |
M. Rosensteiner, Cumulative reconstructor: Fast wavefront reconstruction algorithm for Extremely Large Telescopes, J. Opt. Soc. Am. A, 28 (2011), 2132-2138.doi: 10.1364/JOSAA.28.002132. |
[31] |
M. Rosensteiner, Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition, J. Opt. Soc. Am. A, 29 (2012), 2328-2336.doi: 10.1364/JOSAA.29.002328. |
[32] |
M. Rosensteiner and R. Ramlau, Efficient iterative atmospheric tomography reconstruction from LGS and additional tip/tilt measurements, in SPIE 8447, Adaptive Optics Systems III, 2012, 84475S.doi: 10.1117/12.945876. |
[33] |
M. Rosensteiner and R. Ramlau, The Kaczmarz algorithm for multi-conjugate adaptive optics with laser guide stars, J. Opt. Soc. Am. A, 30 (2013), 1680-1686. |
[34] |
I. Shatokhina, A. Obereder, M. Rosensteiner and R. Ramlau, Preprocessed cumulative reconstructor with domain decomposition: A fast wavefront reconstruction method for pyramid wavefront sensor, {Applied Optics, 52 (2013), 2640-2652.doi: 10.1364/AO.52.002640. |
[35] |
M. Tallon, I. Tallon-Bosc, C. Béchet, F. Momey, M. Fradin and E. Thiébaut, Fractal iterative method for fast atmospheric tomography on extremely large telescopes, in Proc. SPIE 7736, Adaptive Optics Systems II, 2010, 77360X.doi: 10.1117/12.858042. |
[36] |
M. Tallon, I. Tallon-Bosc, C. Béchet and E. Thiébaut, Shack-hartmann wavefront reconstruction with elongated sodium laser guide stars: Improvements with priors and noise correlations, Proc. SPIE, Adaptive Optics Systems, 7015 (2008), 70151N, URL http://link.aip.org/link/?PSI/7015/70151N/1.doi: 10.1117/12.788902. |
[37] |
M. Tallon, E. Thiébaut and C. Béchet, A fractal iterative method for fast wavefront reconstruction for extremely large telescopes, in Adaptive Optics: Methods, Analysis and Applications, Optical Society of America, 2007, paper PMA2doi: 10.1364/AOPT.2007.PMA2. |
[38] |
E. Thiébaut and M. Tallon, Fast minimum variance wavefront reconstruction for extremely large telescopes, J. Opt. Soc. Am. A, 27 (2010), 1046-1059. |
[39] |
A. Tokovinin, M. L. Louarn and M. Sarazin, Isoplanatism in a multi-conjugate adaptive optics system, J. Opt. Soc. Am., 17 (2000), 1819-1827. |
[40] |
A. Tokovinin and E. Viard, Limiting precision of tomographic phase estimation, J. Opt. Soc. Am., 18 (2001), 873-882.doi: 10.1364/JOSAA.18.000873. |
[41] |
G. Tyler, Bandwidth considerations for tracking trough turbulence, J. Opt. Soc. Am. A, 11 (1994), 358-367. |
[42] |
F. Vidal, E. Gendron and G. Rousset, Tomography approach for multi-object adaptive optics, JOSA A, 27 (2010), A253-A264.doi: 10.1364/JOSAA.27.00A253. |
[43] |
C. Vogel and Q. Yang, Fast optimal wavefront reconstruction for multi-conjugate adaptive optics using the Fourier domain preconditioned conjugate gradient algorithm, Optics Express, 14 (2006), 7487-7498.doi: 10.1364/OE.14.007487. |
[44] |
C. Vogel and Q. Yang, Multigrid algorithm for least-squares wavefront reconstruction, Applied Optics, 45 (2006), 705-715.doi: 10.1364/AO.45.000705. |
[45] |
Q. Yang, C. Vogel and B. Ellerbroek, Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography, Applied Optics, 45 (2006), 5281-5293. |
[46] |
M. Yudytskiy, Wavelet Methods in Adaptive Optics, PhD thesis, Johannes Kepler University Linz, 2014. |
[47] |
M. Yudytskiy, T. Helin and R. Ramlau, A frequency dependent preconditioned wavelet method for atmospheric tomography, in Third AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes, 2013. |
[48] |
M. Yudytskiy, T. Helin and R. Ramlau, Finite element-wavelet hybrid algorithm for atmospheric tomography, J. Opt. Soc. Am. A, 31 (2014), 550-560, URL http://josaa.osa.org/abstract.cfm?URI=josaa-31-3-550.doi: 10.1364/JOSAA.31.000550. |
[49] |
M. Zhariy, A. Neubauer, M. Rosensteiner and R. Ramlau, Cumulative wavefront reconstructor for the Shack-Hartman sensor, Inverse Problems and Imaging, 5 (2011), 893-913.doi: 10.3934/ipi.2011.5.893. |