November  2016, 10(4): 869-898. doi: 10.3934/ipi.2016025

On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences

1. 

Department of Mathematics, Florida Institute of Technology, Melbourne, Florida 32901

Received  January 2015 Revised  July 2016 Published  October 2016

We consider a variational formulation of the inverse Stefan problem, where information on the heat flux on the fixed boundary is missing and must be found along with the temperature and free boundary. We employ optimal control framework, where boundary heat flux and free boundary are components of the control vector, and optimality criteria consist of the minimization of the sum of $L_2$-norm declinations from the available measurement of the temperature flux on the fixed boundary and available information on the phase transition temperature on the free boundary. This approach allows one to tackle situations when the phase transition temperature is not known explicitly, and is available through measurement with possible error. It also allows for the development of iterative numerical methods of least computational cost due to the fact that for every given control vector, the parabolic PDE is solved in a fixed region instead of full free boundary problem. In Inverse Problems and Imaging, 7, 2(2013), 307-340 we proved well-posedness in Sobolev spaces framework and convergence of time-discretized optimal control problems. In this paper we perform full discretization and prove convergence of the discrete optimal control problems to the original problem both with respect to cost functional and control.
Citation: Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025
References:
[1]

U. G. Abdulla, On the optimal control of the free boundary problems for the second order parabolic equations. i.well-posedness and convergence of the method of lines,, Inverse Problems and Imaging, 7 (2013), 307.  doi: 10.3934/ipi.2013.7.307.  Google Scholar

[2]

O. M. Alifanov, Inverse Heat Transfer Problems,, Springer-Verlag Telos, (1995).   Google Scholar

[3]

J. Baumeister, Zur optimal Steuerung von frien Randwertausgaben,, ZAMM, 60 (1980).   Google Scholar

[4]

J. B. Bell, The non-characteristic Cauchy problem for a class of equations with time dependence.I.Problem in one space dimension,, SIAM J. Math. Anal., 12 (1981), 759.  doi: 10.1137/0512064.  Google Scholar

[5]

O. V. Besov, V. P. Il'in and S. M. Nikol'skii, Integral Representations of Functions and Embedding Theorems,, Winston & Sons, (1978).   Google Scholar

[6]

B. M. Budak and V. N. Vasil'eva, On the solution of the inverse Stefan problem,, Soviet Math. Dokl., 13 (1972), 811.   Google Scholar

[7]

B. M. Budak and V. N. Vasil'eva, The solution of the inverse Stefan problem,, USSR Comput. Maths. Math. Phys., 13 (1974), 130.  doi: 10.1016/0041-5553(74)90010-X.  Google Scholar

[8]

B. M. Budak and V. N. Vasil'eva, On the solution of Stefan's converse problem. II,, USSR Comput. Maths. Math. Phys., 13 (1973), 97.  doi: 10.1016/0041-5553(73)90069-4.  Google Scholar

[9]

J. R. Cannon, A Cauchy problem for the heat equation,, Ann. Math., 66 (1964), 155.  doi: 10.1007/BF02412441.  Google Scholar

[10]

J. R. Cannon and J. Douglas, The Cauchy problem for the heat equation,, SIAM. J. Numer. Anal., 4 (1967), 317.  doi: 10.1137/0704028.  Google Scholar

[11]

A. Carasso, Determining surface temperatures from interior observations,, SIAM J. Appl. Math., 42 (1982), 558.  doi: 10.1137/0142040.  Google Scholar

[12]

R. E. Ewing, The Cauchy problem for a linear parabolic equation,, J. Math. Anal. Appl., 71 (1979), 167.  doi: 10.1016/0022-247X(79)90223-3.  Google Scholar

[13]

R. E. Ewing and R. S. Falk, Numerical approximation of a Cauchy problem for a parabolic partial differential equation,, Math. Comput., 33 (1979), 1125.  doi: 10.1090/S0025-5718-1979-0537961-3.  Google Scholar

[14]

A. Fasano and M. Primicerio, General free boundary problems for heat equations,, J. Math. Anal. Appl., 57 (1977), 694.  doi: 10.1016/0022-247X(77)90256-6.  Google Scholar

[15]

A. Friedman, Variational Principles and Free Boundary Problems,, John Wiley, (1982).   Google Scholar

[16]

N. L. Gol'dman, Inverse Stefan Problems,, Mathematics and its Applications, (1997).  doi: 10.1007/978-94-011-5488-8.  Google Scholar

[17]

N. L. Gol'dman, Properties of solutions of the inverse Stefan problem,, Differential Equations, 39 (2003), 66.  doi: 10.1023/A:1025120024905.  Google Scholar

[18]

K. H. Hoffman and M. Niezgodka, Control of Parabolic Systems Involving Free Boundarie,, Proc. of Int. Conf. on Free Boundary Problems, (1981).   Google Scholar

[19]

K. H. Hoffman and J. Sprekels, Real time control of free boundary in a two-phase Stefan problem,, Numer. Funct. Anal. Optimiz., 5 (1982), 47.  doi: 10.1080/01630568208816131.  Google Scholar

[20]

K. H. Hoffman and J. Sprekels, On the identification of heat conductivity and latent heat conductivity ans latent heat in a one-phase Stefan problem,, Control and Cybernetics, 14 (1985), 37.   Google Scholar

[21]

P. Jochum, The Inverse Stefan problem as a problem of nonlinear approximation theory,, Journal of Approximate Theorey, 30 (1980), 81.  doi: 10.1016/0021-9045(80)90011-8.  Google Scholar

[22]

P. Jochum, The numerical solution of the inverse Stefan problem,, Numerical Mathematics, 34 (1980), 411.  doi: 10.1007/BF01403678.  Google Scholar

[23]

P. Knabner, Stability theorems for general free boundary problem of the Stefan type and applications,, Meth. Ser. Numer. Meth. Verf. Math. Phys., 25 (1983), 95.   Google Scholar

[24]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of the Parabolic Type,, Translations of Mathematical Monographs, ().   Google Scholar

[25]

K. A. Lurye, Optimal Control in Problems of Mathematical Physics,, Nauka, (1975).   Google Scholar

[26]

A. M. Meyrmanov, The Stefan Problem,, Walter de Gruyter, (1992).  doi: 10.1515/9783110846720.245.  Google Scholar

[27]

M. Niezgodka, Control of parabolic systems with free boundaries-application of inverse formulation,, Control and Cybernetics, 8 (1979), 213.   Google Scholar

[28]

S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems,, Springer-Verlag, (1975).   Google Scholar

[29]

R. H. Nochetto and C. Verdi, The combined use of nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems,, Numer. Funct. Anal. Optimiz., 9 (): 1177.  doi: 10.1080/01630568808816279.  Google Scholar

[30]

M. Primicero, The occurence of pathologies in some Stefan-like problems,, Numerical Treatment of Free Boundary-Value Problems, (1982), 233.   Google Scholar

[31]

C. Sagues, Simulation and optimal control of free boundary,, Numerical Treatment of Free Boundary-Value Problems, 58 (): 270.   Google Scholar

[32]

B. Sherman, General one-phase stefan problems and free boundary problems for the heat equation with cauchy data prescribed on the free boundary,, SIAM J. Appl. Math., 20 (1971), 555.  doi: 10.1137/0120058.  Google Scholar

[33]

V. A. Solonnikov, A priori estimates for solutions of second-order equations of parabolic type,, Trudy Mat. Inst. Steklov., 70 (1964), 133.   Google Scholar

[34]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form,, Trudy Mat. Inst. Steklov., 83 (1965), 3.   Google Scholar

[35]

G. Talenti and S. Vessella, A note on an Ill-posed problem for the heat equation,, J. Austral. Math. Soc., 32 (1982), 358.  doi: 10.1017/S1446788700024915.  Google Scholar

[36]

F. P. Vasil'ev, The existence of a solution of a certain optimal Stefan problem,, In Comput. Methods and Programming, (1969), 110.   Google Scholar

[37]

F. P. Vasil'ev, Methods for Solving Extremal Problems. Minimization Problems in Function Spaces, Regularization, Approximation,, (in Russian), (1981).   Google Scholar

[38]

A. D. Yurii, On an optimal Stefan problem,, Dokl. Akad. Nauk SSSR, 251 (1980), 1317.   Google Scholar

show all references

References:
[1]

U. G. Abdulla, On the optimal control of the free boundary problems for the second order parabolic equations. i.well-posedness and convergence of the method of lines,, Inverse Problems and Imaging, 7 (2013), 307.  doi: 10.3934/ipi.2013.7.307.  Google Scholar

[2]

O. M. Alifanov, Inverse Heat Transfer Problems,, Springer-Verlag Telos, (1995).   Google Scholar

[3]

J. Baumeister, Zur optimal Steuerung von frien Randwertausgaben,, ZAMM, 60 (1980).   Google Scholar

[4]

J. B. Bell, The non-characteristic Cauchy problem for a class of equations with time dependence.I.Problem in one space dimension,, SIAM J. Math. Anal., 12 (1981), 759.  doi: 10.1137/0512064.  Google Scholar

[5]

O. V. Besov, V. P. Il'in and S. M. Nikol'skii, Integral Representations of Functions and Embedding Theorems,, Winston & Sons, (1978).   Google Scholar

[6]

B. M. Budak and V. N. Vasil'eva, On the solution of the inverse Stefan problem,, Soviet Math. Dokl., 13 (1972), 811.   Google Scholar

[7]

B. M. Budak and V. N. Vasil'eva, The solution of the inverse Stefan problem,, USSR Comput. Maths. Math. Phys., 13 (1974), 130.  doi: 10.1016/0041-5553(74)90010-X.  Google Scholar

[8]

B. M. Budak and V. N. Vasil'eva, On the solution of Stefan's converse problem. II,, USSR Comput. Maths. Math. Phys., 13 (1973), 97.  doi: 10.1016/0041-5553(73)90069-4.  Google Scholar

[9]

J. R. Cannon, A Cauchy problem for the heat equation,, Ann. Math., 66 (1964), 155.  doi: 10.1007/BF02412441.  Google Scholar

[10]

J. R. Cannon and J. Douglas, The Cauchy problem for the heat equation,, SIAM. J. Numer. Anal., 4 (1967), 317.  doi: 10.1137/0704028.  Google Scholar

[11]

A. Carasso, Determining surface temperatures from interior observations,, SIAM J. Appl. Math., 42 (1982), 558.  doi: 10.1137/0142040.  Google Scholar

[12]

R. E. Ewing, The Cauchy problem for a linear parabolic equation,, J. Math. Anal. Appl., 71 (1979), 167.  doi: 10.1016/0022-247X(79)90223-3.  Google Scholar

[13]

R. E. Ewing and R. S. Falk, Numerical approximation of a Cauchy problem for a parabolic partial differential equation,, Math. Comput., 33 (1979), 1125.  doi: 10.1090/S0025-5718-1979-0537961-3.  Google Scholar

[14]

A. Fasano and M. Primicerio, General free boundary problems for heat equations,, J. Math. Anal. Appl., 57 (1977), 694.  doi: 10.1016/0022-247X(77)90256-6.  Google Scholar

[15]

A. Friedman, Variational Principles and Free Boundary Problems,, John Wiley, (1982).   Google Scholar

[16]

N. L. Gol'dman, Inverse Stefan Problems,, Mathematics and its Applications, (1997).  doi: 10.1007/978-94-011-5488-8.  Google Scholar

[17]

N. L. Gol'dman, Properties of solutions of the inverse Stefan problem,, Differential Equations, 39 (2003), 66.  doi: 10.1023/A:1025120024905.  Google Scholar

[18]

K. H. Hoffman and M. Niezgodka, Control of Parabolic Systems Involving Free Boundarie,, Proc. of Int. Conf. on Free Boundary Problems, (1981).   Google Scholar

[19]

K. H. Hoffman and J. Sprekels, Real time control of free boundary in a two-phase Stefan problem,, Numer. Funct. Anal. Optimiz., 5 (1982), 47.  doi: 10.1080/01630568208816131.  Google Scholar

[20]

K. H. Hoffman and J. Sprekels, On the identification of heat conductivity and latent heat conductivity ans latent heat in a one-phase Stefan problem,, Control and Cybernetics, 14 (1985), 37.   Google Scholar

[21]

P. Jochum, The Inverse Stefan problem as a problem of nonlinear approximation theory,, Journal of Approximate Theorey, 30 (1980), 81.  doi: 10.1016/0021-9045(80)90011-8.  Google Scholar

[22]

P. Jochum, The numerical solution of the inverse Stefan problem,, Numerical Mathematics, 34 (1980), 411.  doi: 10.1007/BF01403678.  Google Scholar

[23]

P. Knabner, Stability theorems for general free boundary problem of the Stefan type and applications,, Meth. Ser. Numer. Meth. Verf. Math. Phys., 25 (1983), 95.   Google Scholar

[24]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of the Parabolic Type,, Translations of Mathematical Monographs, ().   Google Scholar

[25]

K. A. Lurye, Optimal Control in Problems of Mathematical Physics,, Nauka, (1975).   Google Scholar

[26]

A. M. Meyrmanov, The Stefan Problem,, Walter de Gruyter, (1992).  doi: 10.1515/9783110846720.245.  Google Scholar

[27]

M. Niezgodka, Control of parabolic systems with free boundaries-application of inverse formulation,, Control and Cybernetics, 8 (1979), 213.   Google Scholar

[28]

S. M. Nikol'skii, Approximation of Functions of Several Variables and Imbedding Theorems,, Springer-Verlag, (1975).   Google Scholar

[29]

R. H. Nochetto and C. Verdi, The combined use of nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems,, Numer. Funct. Anal. Optimiz., 9 (): 1177.  doi: 10.1080/01630568808816279.  Google Scholar

[30]

M. Primicero, The occurence of pathologies in some Stefan-like problems,, Numerical Treatment of Free Boundary-Value Problems, (1982), 233.   Google Scholar

[31]

C. Sagues, Simulation and optimal control of free boundary,, Numerical Treatment of Free Boundary-Value Problems, 58 (): 270.   Google Scholar

[32]

B. Sherman, General one-phase stefan problems and free boundary problems for the heat equation with cauchy data prescribed on the free boundary,, SIAM J. Appl. Math., 20 (1971), 555.  doi: 10.1137/0120058.  Google Scholar

[33]

V. A. Solonnikov, A priori estimates for solutions of second-order equations of parabolic type,, Trudy Mat. Inst. Steklov., 70 (1964), 133.   Google Scholar

[34]

V. A. Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form,, Trudy Mat. Inst. Steklov., 83 (1965), 3.   Google Scholar

[35]

G. Talenti and S. Vessella, A note on an Ill-posed problem for the heat equation,, J. Austral. Math. Soc., 32 (1982), 358.  doi: 10.1017/S1446788700024915.  Google Scholar

[36]

F. P. Vasil'ev, The existence of a solution of a certain optimal Stefan problem,, In Comput. Methods and Programming, (1969), 110.   Google Scholar

[37]

F. P. Vasil'ev, Methods for Solving Extremal Problems. Minimization Problems in Function Spaces, Regularization, Approximation,, (in Russian), (1981).   Google Scholar

[38]

A. D. Yurii, On an optimal Stefan problem,, Dokl. Akad. Nauk SSSR, 251 (1980), 1317.   Google Scholar

[1]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[2]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[3]

Karl Kunisch, Markus Müller. Uniform convergence of the POD method and applications to optimal control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4477-4501. doi: 10.3934/dcds.2015.35.4477

[4]

Sie Long Kek, Kok Lay Teo, Mohd Ismail Abd Aziz. Filtering solution of nonlinear stochastic optimal control problem in discrete-time with model-reality differences. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 207-222. doi: 10.3934/naco.2012.2.207

[5]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[6]

Minzilia A. Sagadeeva, Sophiya A. Zagrebina, Natalia A. Manakova. Optimal control of solutions of a multipoint initial-final problem for non-autonomous evolutionary Sobolev type equation. Evolution Equations & Control Theory, 2019, 8 (3) : 473-488. doi: 10.3934/eect.2019023

[7]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

[8]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[9]

Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473

[10]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[11]

Lucas Bonifacius, Ira Neitzel. Second order optimality conditions for optimal control of quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (1) : 1-34. doi: 10.3934/mcrf.2018001

[12]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[13]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[14]

Peng Zhong, Suzanne Lenhart. Study on the order of events in optimal control of a harvesting problem modeled by integrodifference equations. Evolution Equations & Control Theory, 2013, 2 (4) : 749-769. doi: 10.3934/eect.2013.2.749

[15]

Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487

[16]

Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929

[17]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[18]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[19]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

[20]

Sie Long Kek, Mohd Ismail Abd Aziz. Output regulation for discrete-time nonlinear stochastic optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 275-288. doi: 10.3934/naco.2015.5.275

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]