Citation: |
[1] |
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, New York, 1970. |
[2] |
S. You, H. Tanabe, Y. Ono and A. L. Balandin, Vector and scalar tomography of compact, Toroid Plasmas, J. Fusion Energy, 29 (2010), 592-595.doi: 10.1007/s10894-010-9317-8. |
[3] |
A. L. Balandin, Tomography of force-free fields, Numerical Analysis and Applications, 8 (2015), 195-207.doi: 10.1134/S1995423915030015. |
[4] |
B. Knyazev, A. L. Balandin, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, A. A. Nikitin, V. V. Pickalov, M. G. Vlasenko, D. G. Rodionov, D. G. Esaev, M. A. Dem'yanenko and O. A. Shevchenko, Classic holography, tomography and speckle-metrology using a high-power terahertz FEL and real-time image detectors, 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010, Rome, Italy, September 5-10, 2010). IEEE, 2010.doi: 10.1109/ICIMW.2010.5612533. |
[5] |
H. Bateman and A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, New York, 1953. |
[6] |
L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics. Theory and Applications, Encyclopedia of Mathematics and its Applications, Addison-Wesley, Reading, MA, 1981. |
[7] |
A. M. Cormack, Representation of a function by its line integrals, with some radiological applications, J. Appl. Phys., 34 (1963), p2722.doi: 10.1063/1.1729798. |
[8] |
J. Cantarella, D. DeTurck and H. Gluck, Vector calculus and the topology of domains in 3-space, Amer. Math. Month., 109 (2002), 409-442.doi: 10.2307/2695643. |
[9] |
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, 1992. |
[10] |
M. E. Davison, A singular value decomposition for the Radon transform in $n$-dimensional, Euclidean space, Numer. Func. Anal. Optim., 3 (1981), 321-340.doi: 10.1080/01630568108816093. |
[11] |
E. Y. Derevtsov, A. Efimov, A. K. Lois and T. Schuster, Singular value decomposition and its application to numerical inversion for ray transforms in 2D vector tomography, J. Inv. Ill-Posed Prob., 19 (2011), 689-715.doi: 10.1515/jiip.2011.047. |
[12] |
E. Derevtsov, S. Kazantsev and T. Schuster, Polynomial bases for subspaces of potential and solenoidal vector fields in the unit ball of $R^3$, J. Inv. Ill-Posed Prob., 15 (2007), 19-55.doi: 10.1515/JIIP.2007.002. |
[13] |
A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, 1957. |
[14] |
W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere with Applications to Geomathematics, Clarendon Press, Oxford, 1998. |
[15] |
W. Freeden and M. Schreiner, Spherical Functions of Mathematical Geosciences. A Scalar, Vectorial, and Tensorial Setup, Springer-Verlag Berlin Heidelberg, 2009. |
[16] |
W. W. Hansen, A new type of expansion in radiation problems, Phys. Rev., 47 (1935), 139-143.doi: 10.1103/PhysRev.47.139. |
[17] |
S. H. Izen, A series inversion for the X-ray transform in $n$ dimensions, Inverse Problems, 4 (1988), 725-748.doi: 10.1088/0266-5611/4/3/012. |
[18] |
S. H. Izen, Inversion of the $k$-plane transform by orthogonal function series expansions, Inverse Problems, 5 (1989), 181-202.doi: 10.1088/0266-5611/5/2/006. |
[19] |
S. Kazantsev and T. Schuster, Asymptotic inversion formulas in 3D vector field tomography for different geometries, J. Inv. Ill-Posed Prob., 19 (2011), 769-799.doi: 10.1515/jiip.2011.049. |
[20] |
S. G. Kazantsev and A. A. Bukgheim, Singular value decomposition for 2D fan-beam Radon transform of tensor fields, J. Inv. Ill-Posed Prob., 12 (2004), 245-278.doi: 10.1515/1569394042215865. |
[21] |
A. K. Louis, Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal., 15 (1984), 621-633.doi: 10.1137/0515047. |
[22] |
A. K. Louis, Incomplete data problems in X-ray computerized tomography I. Singular value decomposition of the limited angle transform, Numer. Math., 48 (1986), 251-262.doi: 10.1007/BF01389474. |
[23] |
R. B. Marr, On the reconstruction of a function on a circular domain from a sampling of its line integrals, J. Math. Anal. Appl., 45 (1974), 357-374.doi: 10.1016/0022-247X(74)90078-X. |
[24] |
P. Maass, The X-ray transform: Singular value decomposition and resolution, Inverse Problems, 3 (1987), 729-741.doi: 10.1088/0266-5611/3/4/016. |
[25] |
P. M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953. |
[26] |
F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, New York, 1986. |
[27] |
F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM, Philadelphia, 2001.doi: 10.1137/1.9780898718324. |
[28] |
F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, NIST Handbook of Mathematical Functions, NIST and Cambridge Univ. Press, 2010. |
[29] |
M. Rosier, Biorthogonal series expansions of the X-ray and $k$-plane transforms, Inverse Problems, 11 (1995), 231-249.doi: 10.1088/0266-5611/11/1/014. |
[30] |
S. Stein, Addition theorem for spherical wave functions, Quart. Appl. Math., 19 (1961), 15-24. |
[31] |
J. A. Stratton, Electromagnetic Theory, McGrow-Hill, New York, 1941.doi: 10.1002/9781119134640. |
[32] |
D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum Theory of Angular Momentum, World Scientific Publishing, Singapore, 1988.doi: 10.1142/0270. |
[33] |
L. Wang and R. S. Granetz, Expansion method in three-dimensional tomography, J. Opt. Soc. Am. A, 10 (1993), 2292-2295.doi: 10.1364/JOSAA.10.002292. |
[34] |
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1995. |