-
Previous Article
FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems
- IPI Home
- This Issue
-
Next Article
The localized basis functions for scalar and vector 3D tomography and their ray transforms
Imaging with electromagnetic waves in terminating waveguides
1. | Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, United States |
References:
[1] |
R. Alonso and L. Borcea, Electromagnetic wave propagation in random waveguides,, Multiscale Modeling & Simulation, 13 (2015), 847.
doi: 10.1137/130941936. |
[2] |
T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering problems in a planar 3D waveguide,, SIAM J. Appl. Math., 71 (2011), 753.
doi: 10.1137/100806333. |
[3] |
A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,, Mathematical Methods in the Applied Sciences, 17 (1994), 305.
doi: 10.1002/mma.1670170502. |
[4] |
L. Borcea, L. Issa and C. Tsogka, Source localization in random acoustic waveguides,, Multiscale Model. Simul., 8 (2010), 1981.
doi: 10.1137/100782711. |
[5] |
L. Borcea and J. Garnier, Paraxial coupling of propagating modes in three-dimensional waveguides with random boundaries,, Multiscale Modeling & Simulation, 12 (2014), 832.
doi: 10.1137/12089747X. |
[6] |
L. Bourgeois, F. L. Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides,, Inverse Problems, 27 (2011).
doi: 10.1088/0266-5611/27/5/055001. |
[7] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation,, Inverse Problems, 24 (2008).
doi: 10.1088/0266-5611/24/1/015018. |
[8] |
L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides,, Inverse Problems, 28 (2012).
doi: 10.1088/0266-5611/28/10/105011. |
[9] |
L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/2/025017. |
[10] |
S. Dediu and J. R. McLaughlin, Recovering inhomogeneities in a waveguide using eigensystem decomposition,, Inverse Problems, 22 (2006), 1227.
doi: 10.1088/0266-5611/22/4/007. |
[11] |
L. Evans, Partial Differential Equations (Graduate Studies in Mathematics vol 19)(Providence, RI: American Mathematical Society),, Oxford University Press, (1998).
|
[12] |
L. Issa, Source Localization in Cluttered Acoustic Waveguides,, PhD thesis, (2010).
|
[13] |
J. D. Jackson, Classical Electrodynamics,, 2nd edition, (1975).
|
[14] |
A. K. Jordan and L. S. Tamil, Inverse scattering theory for optical waveguides and devices: Synthesis from rational and nonrational reflection coefficients,, Radio Science, 31 (1996), 1863.
doi: 10.1029/96RS02501. |
[15] |
U. Kangro and R. Nicolaides, Divergence boundary conditions for vector helmholtz equations with divergence constraints,, ESAIM, 33 (1999), 479.
doi: 10.1051/m2an:1999148. |
[16] |
A. Kirsch, An integral equation approach and the interior transmission problem for Maxwell's equations,, Inverse Probl. Imaging, 1 (2007), 159.
doi: 10.3934/ipi.2007.1.159. |
[17] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Operators,, Cambridge University Press, (2000).
|
[18] |
D. W. Mills and L. S. Tamil, Analysis of planar optical waveguides using scattering data,, J. Opt. Soc. Am. A, 9 (1992), 1769.
doi: 10.1364/JOSAA.9.001769. |
[19] |
P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford Science Publications, (2003).
doi: 10.1093/acprof:oso/9780198508885.001.0001. |
[20] |
P. Monk and V. Selgas, Sampling type methods for an inverse waveguide problem,, Inverse Probl. Imaging, 6 (2012), 709.
doi: 10.3934/ipi.2012.6.709. |
[21] |
P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing,, J. Acoust. Soc. Am., 107 (2000), 2418.
doi: 10.1121/1.428628. |
[22] |
K. G. Sabra and D. R. Dowling, Blind deconvolution in ocean waveguides using artificial time reversal,, The Journal of the Acoustical Society of America, 116 (2004), 262.
doi: 10.1121/1.1751151. |
[23] |
L. S. Tamil and A. K. Jordan, Spectral inverse scattering theory for inhomogeneous dielectric waveguides and devices,, Proceedings of the IEEE, 79 (1991), 1519.
doi: 10.1109/5.104226. |
[24] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides,, SIAM Journal on Imaging Sciences, 6 (2013), 2714.
doi: 10.1137/130924238. |
[25] |
Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging,, Inverse Problems, 16 (2000), 1761.
doi: 10.1088/0266-5611/16/6/311. |
show all references
References:
[1] |
R. Alonso and L. Borcea, Electromagnetic wave propagation in random waveguides,, Multiscale Modeling & Simulation, 13 (2015), 847.
doi: 10.1137/130941936. |
[2] |
T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering problems in a planar 3D waveguide,, SIAM J. Appl. Math., 71 (2011), 753.
doi: 10.1137/100806333. |
[3] |
A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,, Mathematical Methods in the Applied Sciences, 17 (1994), 305.
doi: 10.1002/mma.1670170502. |
[4] |
L. Borcea, L. Issa and C. Tsogka, Source localization in random acoustic waveguides,, Multiscale Model. Simul., 8 (2010), 1981.
doi: 10.1137/100782711. |
[5] |
L. Borcea and J. Garnier, Paraxial coupling of propagating modes in three-dimensional waveguides with random boundaries,, Multiscale Modeling & Simulation, 12 (2014), 832.
doi: 10.1137/12089747X. |
[6] |
L. Bourgeois, F. L. Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides,, Inverse Problems, 27 (2011).
doi: 10.1088/0266-5611/27/5/055001. |
[7] |
L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation,, Inverse Problems, 24 (2008).
doi: 10.1088/0266-5611/24/1/015018. |
[8] |
L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides,, Inverse Problems, 28 (2012).
doi: 10.1088/0266-5611/28/10/105011. |
[9] |
L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides,, Inverse Problems, 29 (2013).
doi: 10.1088/0266-5611/29/2/025017. |
[10] |
S. Dediu and J. R. McLaughlin, Recovering inhomogeneities in a waveguide using eigensystem decomposition,, Inverse Problems, 22 (2006), 1227.
doi: 10.1088/0266-5611/22/4/007. |
[11] |
L. Evans, Partial Differential Equations (Graduate Studies in Mathematics vol 19)(Providence, RI: American Mathematical Society),, Oxford University Press, (1998).
|
[12] |
L. Issa, Source Localization in Cluttered Acoustic Waveguides,, PhD thesis, (2010).
|
[13] |
J. D. Jackson, Classical Electrodynamics,, 2nd edition, (1975).
|
[14] |
A. K. Jordan and L. S. Tamil, Inverse scattering theory for optical waveguides and devices: Synthesis from rational and nonrational reflection coefficients,, Radio Science, 31 (1996), 1863.
doi: 10.1029/96RS02501. |
[15] |
U. Kangro and R. Nicolaides, Divergence boundary conditions for vector helmholtz equations with divergence constraints,, ESAIM, 33 (1999), 479.
doi: 10.1051/m2an:1999148. |
[16] |
A. Kirsch, An integral equation approach and the interior transmission problem for Maxwell's equations,, Inverse Probl. Imaging, 1 (2007), 159.
doi: 10.3934/ipi.2007.1.159. |
[17] |
W. McLean, Strongly Elliptic Systems and Boundary Integral Operators,, Cambridge University Press, (2000).
|
[18] |
D. W. Mills and L. S. Tamil, Analysis of planar optical waveguides using scattering data,, J. Opt. Soc. Am. A, 9 (1992), 1769.
doi: 10.1364/JOSAA.9.001769. |
[19] |
P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford Science Publications, (2003).
doi: 10.1093/acprof:oso/9780198508885.001.0001. |
[20] |
P. Monk and V. Selgas, Sampling type methods for an inverse waveguide problem,, Inverse Probl. Imaging, 6 (2012), 709.
doi: 10.3934/ipi.2012.6.709. |
[21] |
P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing,, J. Acoust. Soc. Am., 107 (2000), 2418.
doi: 10.1121/1.428628. |
[22] |
K. G. Sabra and D. R. Dowling, Blind deconvolution in ocean waveguides using artificial time reversal,, The Journal of the Acoustical Society of America, 116 (2004), 262.
doi: 10.1121/1.1751151. |
[23] |
L. S. Tamil and A. K. Jordan, Spectral inverse scattering theory for inhomogeneous dielectric waveguides and devices,, Proceedings of the IEEE, 79 (1991), 1519.
doi: 10.1109/5.104226. |
[24] |
C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides,, SIAM Journal on Imaging Sciences, 6 (2013), 2714.
doi: 10.1137/130924238. |
[25] |
Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging,, Inverse Problems, 16 (2000), 1761.
doi: 10.1088/0266-5611/16/6/311. |
[1] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[2] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[3] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[4] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[5] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[6] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[7] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[8] |
Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061 |
[9] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[10] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[11] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[12] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[13] |
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005 |
[14] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[15] |
Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127 |
[16] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[17] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[18] |
François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015 |
[19] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020404 |
[20] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]