• Previous Article
    FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems
  • IPI Home
  • This Issue
  • Next Article
    The localized basis functions for scalar and vector 3D tomography and their ray transforms
November  2016, 10(4): 915-941. doi: 10.3934/ipi.2016027

Imaging with electromagnetic waves in terminating waveguides

1. 

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, United States

Received  October 2015 Revised  July 2016 Published  October 2016

We study an inverse scattering problem for Maxwell's equations in terminating waveguides, where localized reflectors are to be imaged using a remote array of sensors. The array probes the waveguide with waves and measures the scattered returns. The mathematical formulation of the inverse scattering problem is based on the electromagnetic Lippmann-Schwinger integral equation and an explicit calculation of the Green tensor. The image formation is carried with reverse time migration and with $\ell_1$ optimization.
Citation: Liliana Borcea, Dinh-Liem Nguyen. Imaging with electromagnetic waves in terminating waveguides. Inverse Problems & Imaging, 2016, 10 (4) : 915-941. doi: 10.3934/ipi.2016027
References:
[1]

R. Alonso and L. Borcea, Electromagnetic wave propagation in random waveguides,, Multiscale Modeling & Simulation, 13 (2015), 847.  doi: 10.1137/130941936.  Google Scholar

[2]

T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering problems in a planar 3D waveguide,, SIAM J. Appl. Math., 71 (2011), 753.  doi: 10.1137/100806333.  Google Scholar

[3]

A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,, Mathematical Methods in the Applied Sciences, 17 (1994), 305.  doi: 10.1002/mma.1670170502.  Google Scholar

[4]

L. Borcea, L. Issa and C. Tsogka, Source localization in random acoustic waveguides,, Multiscale Model. Simul., 8 (2010), 1981.  doi: 10.1137/100782711.  Google Scholar

[5]

L. Borcea and J. Garnier, Paraxial coupling of propagating modes in three-dimensional waveguides with random boundaries,, Multiscale Modeling & Simulation, 12 (2014), 832.  doi: 10.1137/12089747X.  Google Scholar

[6]

L. Bourgeois, F. L. Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055001.  Google Scholar

[7]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015018.  Google Scholar

[8]

L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/10/105011.  Google Scholar

[9]

L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/2/025017.  Google Scholar

[10]

S. Dediu and J. R. McLaughlin, Recovering inhomogeneities in a waveguide using eigensystem decomposition,, Inverse Problems, 22 (2006), 1227.  doi: 10.1088/0266-5611/22/4/007.  Google Scholar

[11]

L. Evans, Partial Differential Equations (Graduate Studies in Mathematics vol 19)(Providence, RI: American Mathematical Society),, Oxford University Press, (1998).   Google Scholar

[12]

L. Issa, Source Localization in Cluttered Acoustic Waveguides,, PhD thesis, (2010).   Google Scholar

[13]

J. D. Jackson, Classical Electrodynamics,, 2nd edition, (1975).   Google Scholar

[14]

A. K. Jordan and L. S. Tamil, Inverse scattering theory for optical waveguides and devices: Synthesis from rational and nonrational reflection coefficients,, Radio Science, 31 (1996), 1863.  doi: 10.1029/96RS02501.  Google Scholar

[15]

U. Kangro and R. Nicolaides, Divergence boundary conditions for vector helmholtz equations with divergence constraints,, ESAIM, 33 (1999), 479.  doi: 10.1051/m2an:1999148.  Google Scholar

[16]

A. Kirsch, An integral equation approach and the interior transmission problem for Maxwell's equations,, Inverse Probl. Imaging, 1 (2007), 159.  doi: 10.3934/ipi.2007.1.159.  Google Scholar

[17]

W. McLean, Strongly Elliptic Systems and Boundary Integral Operators,, Cambridge University Press, (2000).   Google Scholar

[18]

D. W. Mills and L. S. Tamil, Analysis of planar optical waveguides using scattering data,, J. Opt. Soc. Am. A, 9 (1992), 1769.  doi: 10.1364/JOSAA.9.001769.  Google Scholar

[19]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford Science Publications, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[20]

P. Monk and V. Selgas, Sampling type methods for an inverse waveguide problem,, Inverse Probl. Imaging, 6 (2012), 709.  doi: 10.3934/ipi.2012.6.709.  Google Scholar

[21]

P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing,, J. Acoust. Soc. Am., 107 (2000), 2418.  doi: 10.1121/1.428628.  Google Scholar

[22]

K. G. Sabra and D. R. Dowling, Blind deconvolution in ocean waveguides using artificial time reversal,, The Journal of the Acoustical Society of America, 116 (2004), 262.  doi: 10.1121/1.1751151.  Google Scholar

[23]

L. S. Tamil and A. K. Jordan, Spectral inverse scattering theory for inhomogeneous dielectric waveguides and devices,, Proceedings of the IEEE, 79 (1991), 1519.  doi: 10.1109/5.104226.  Google Scholar

[24]

C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides,, SIAM Journal on Imaging Sciences, 6 (2013), 2714.  doi: 10.1137/130924238.  Google Scholar

[25]

Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging,, Inverse Problems, 16 (2000), 1761.  doi: 10.1088/0266-5611/16/6/311.  Google Scholar

show all references

References:
[1]

R. Alonso and L. Borcea, Electromagnetic wave propagation in random waveguides,, Multiscale Modeling & Simulation, 13 (2015), 847.  doi: 10.1137/130941936.  Google Scholar

[2]

T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering problems in a planar 3D waveguide,, SIAM J. Appl. Math., 71 (2011), 753.  doi: 10.1137/100806333.  Google Scholar

[3]

A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem,, Mathematical Methods in the Applied Sciences, 17 (1994), 305.  doi: 10.1002/mma.1670170502.  Google Scholar

[4]

L. Borcea, L. Issa and C. Tsogka, Source localization in random acoustic waveguides,, Multiscale Model. Simul., 8 (2010), 1981.  doi: 10.1137/100782711.  Google Scholar

[5]

L. Borcea and J. Garnier, Paraxial coupling of propagating modes in three-dimensional waveguides with random boundaries,, Multiscale Modeling & Simulation, 12 (2014), 832.  doi: 10.1137/12089747X.  Google Scholar

[6]

L. Bourgeois, F. L. Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides,, Inverse Problems, 27 (2011).  doi: 10.1088/0266-5611/27/5/055001.  Google Scholar

[7]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015018.  Google Scholar

[8]

L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/10/105011.  Google Scholar

[9]

L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides,, Inverse Problems, 29 (2013).  doi: 10.1088/0266-5611/29/2/025017.  Google Scholar

[10]

S. Dediu and J. R. McLaughlin, Recovering inhomogeneities in a waveguide using eigensystem decomposition,, Inverse Problems, 22 (2006), 1227.  doi: 10.1088/0266-5611/22/4/007.  Google Scholar

[11]

L. Evans, Partial Differential Equations (Graduate Studies in Mathematics vol 19)(Providence, RI: American Mathematical Society),, Oxford University Press, (1998).   Google Scholar

[12]

L. Issa, Source Localization in Cluttered Acoustic Waveguides,, PhD thesis, (2010).   Google Scholar

[13]

J. D. Jackson, Classical Electrodynamics,, 2nd edition, (1975).   Google Scholar

[14]

A. K. Jordan and L. S. Tamil, Inverse scattering theory for optical waveguides and devices: Synthesis from rational and nonrational reflection coefficients,, Radio Science, 31 (1996), 1863.  doi: 10.1029/96RS02501.  Google Scholar

[15]

U. Kangro and R. Nicolaides, Divergence boundary conditions for vector helmholtz equations with divergence constraints,, ESAIM, 33 (1999), 479.  doi: 10.1051/m2an:1999148.  Google Scholar

[16]

A. Kirsch, An integral equation approach and the interior transmission problem for Maxwell's equations,, Inverse Probl. Imaging, 1 (2007), 159.  doi: 10.3934/ipi.2007.1.159.  Google Scholar

[17]

W. McLean, Strongly Elliptic Systems and Boundary Integral Operators,, Cambridge University Press, (2000).   Google Scholar

[18]

D. W. Mills and L. S. Tamil, Analysis of planar optical waveguides using scattering data,, J. Opt. Soc. Am. A, 9 (1992), 1769.  doi: 10.1364/JOSAA.9.001769.  Google Scholar

[19]

P. Monk, Finite Element Methods for Maxwell's Equations,, Oxford Science Publications, (2003).  doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[20]

P. Monk and V. Selgas, Sampling type methods for an inverse waveguide problem,, Inverse Probl. Imaging, 6 (2012), 709.  doi: 10.3934/ipi.2012.6.709.  Google Scholar

[21]

P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing,, J. Acoust. Soc. Am., 107 (2000), 2418.  doi: 10.1121/1.428628.  Google Scholar

[22]

K. G. Sabra and D. R. Dowling, Blind deconvolution in ocean waveguides using artificial time reversal,, The Journal of the Acoustical Society of America, 116 (2004), 262.  doi: 10.1121/1.1751151.  Google Scholar

[23]

L. S. Tamil and A. K. Jordan, Spectral inverse scattering theory for inhomogeneous dielectric waveguides and devices,, Proceedings of the IEEE, 79 (1991), 1519.  doi: 10.1109/5.104226.  Google Scholar

[24]

C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides,, SIAM Journal on Imaging Sciences, 6 (2013), 2714.  doi: 10.1137/130924238.  Google Scholar

[25]

Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging,, Inverse Problems, 16 (2000), 1761.  doi: 10.1088/0266-5611/16/6/311.  Google Scholar

[1]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[2]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[3]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[4]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[7]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[8]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[9]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[10]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[11]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[12]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[13]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[16]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[17]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[18]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[19]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[20]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]