\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Imaging with electromagnetic waves in terminating waveguides

Abstract / Introduction Related Papers Cited by
  • We study an inverse scattering problem for Maxwell's equations in terminating waveguides, where localized reflectors are to be imaged using a remote array of sensors. The array probes the waveguide with waves and measures the scattered returns. The mathematical formulation of the inverse scattering problem is based on the electromagnetic Lippmann-Schwinger integral equation and an explicit calculation of the Green tensor. The image formation is carried with reverse time migration and with $\ell_1$ optimization.
    Mathematics Subject Classification: Primary: 35R30, 78A46; Secondary: 35Q61.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Alonso and L. Borcea, Electromagnetic wave propagation in random waveguides, Multiscale Modeling & Simulation, 13 (2015), 847-889.doi: 10.1137/130941936.

    [2]

    T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering problems in a planar 3D waveguide, SIAM J. Appl. Math., 71 (2011), 753-772.doi: 10.1137/100806333.

    [3]

    A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem, Mathematical Methods in the Applied Sciences, 17 (1994), 305-338.doi: 10.1002/mma.1670170502.

    [4]

    L. Borcea, L. Issa and C. Tsogka, Source localization in random acoustic waveguides, Multiscale Model. Simul., 8 (2010), 1981-2022.doi: 10.1137/100782711.

    [5]

    L. Borcea and J. Garnier, Paraxial coupling of propagating modes in three-dimensional waveguides with random boundaries, Multiscale Modeling & Simulation, 12 (2014), 832-878.doi: 10.1137/12089747X.

    [6]

    L. Bourgeois, F. L. Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27pp.doi: 10.1088/0266-5611/27/5/055001.

    [7]

    L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation, Inverse Problems, 24 (2008), 015018, 20pp.doi: 10.1088/0266-5611/24/1/015018.

    [8]

    L. Bourgeois and E. Lunéville, On the use of sampling methods to identify cracks in acoustic waveguides, Inverse Problems, 28 (2012), 105011, 18pp.doi: 10.1088/0266-5611/28/10/105011.

    [9]

    L. Bourgeois and E. Lunéville, On the use of the linear sampling method to identify cracks in elastic waveguides, Inverse Problems, 29 (2013), 025017, 19pp.doi: 10.1088/0266-5611/29/2/025017.

    [10]

    S. Dediu and J. R. McLaughlin, Recovering inhomogeneities in a waveguide using eigensystem decomposition, Inverse Problems, 22 (2006), 1227-1246, URL http://stacks.iop.org/0266-5611/22/1227.doi: 10.1088/0266-5611/22/4/007.

    [11]

    L. Evans, Partial Differential Equations (Graduate Studies in Mathematics vol 19)(Providence, RI: American Mathematical Society), Oxford University Press, 1998.

    [12]

    L. Issa, Source Localization in Cluttered Acoustic Waveguides, PhD thesis, Rice University, 2010.

    [13]

    J. D. Jackson, Classical Electrodynamics, 2nd edition, Wiley New York etc., 1975.

    [14]

    A. K. Jordan and L. S. Tamil, Inverse scattering theory for optical waveguides and devices: Synthesis from rational and nonrational reflection coefficients, Radio Science, 31 (1996), 1863-1876.doi: 10.1029/96RS02501.

    [15]

    U. Kangro and R. Nicolaides, Divergence boundary conditions for vector helmholtz equations with divergence constraints, ESAIM, Math. Model. Numer. Anal., 33 (1999), 479-492.doi: 10.1051/m2an:1999148.

    [16]

    A. Kirsch, An integral equation approach and the interior transmission problem for Maxwell's equations, Inverse Probl. Imaging, 1 (2007), 159-179.doi: 10.3934/ipi.2007.1.159.

    [17]

    W. McLean, Strongly Elliptic Systems and Boundary Integral Operators, Cambridge University Press, Cambridge, UK, 2000.

    [18]

    D. W. Mills and L. S. Tamil, Analysis of planar optical waveguides using scattering data, J. Opt. Soc. Am. A, 9 (1992), 1769-1778.doi: 10.1364/JOSAA.9.001769.

    [19]

    P. Monk, Finite Element Methods for Maxwell's Equations, Oxford Science Publications, Oxford, 2003.doi: 10.1093/acprof:oso/9780198508885.001.0001.

    [20]

    P. Monk and V. Selgas, Sampling type methods for an inverse waveguide problem, Inverse Probl. Imaging, 6 (2012), 709-747.doi: 10.3934/ipi.2012.6.709.

    [21]

    P. Roux and M. Fink, Time reversal in a waveguide: Study of the temporal and spatial focusing, J. Acoust. Soc. Am., 107 (2000), 2418-2429.doi: 10.1121/1.428628.

    [22]

    K. G. Sabra and D. R. Dowling, Blind deconvolution in ocean waveguides using artificial time reversal, The Journal of the Acoustical Society of America, 116 (2004), 262-271.doi: 10.1121/1.1751151.

    [23]

    L. S. Tamil and A. K. Jordan, Spectral inverse scattering theory for inhomogeneous dielectric waveguides and devices, Proceedings of the IEEE, 79 (1991), 1519-1528.doi: 10.1109/5.104226.

    [24]

    C. Tsogka, D. A. Mitsoudis and S. Papadimitropoulos, Selective imaging of extended reflectors in two-dimensional waveguides, SIAM Journal on Imaging Sciences, 6 (2013), 2714-2739.doi: 10.1137/130924238.

    [25]

    Y. Xu, C. Matawa and W. Lin, Generalized dual space indicator method for underwater imaging, Inverse Problems, 16 (2000), 1761-1776.doi: 10.1088/0266-5611/16/6/311.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(137) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return