Citation: |
[1] |
A. Beskos, N. Pillai, G. Roberts, J-M Sanz-Serna and A. Stuart, Optimal tuning of the hybrid Monte Carlo algorithm, Bernoulli, 19 (2013), 1501-1534.doi: 10.3150/12-BEJ414. |
[2] |
A. Beskos, F. J. Pinski, J. M. Sanz-Serna and A. M. Stuart, Hybrid Monte Carlo on Hilbert spaces, Stochastic Processes and their Applications, 121 (2011), 2201-2230.doi: 10.1016/j.spa.2011.06.003. |
[3] |
A. Beskos and A. M. Stuart, MCMC methods for sampling function space, in Invited Lectures: Sixth International Congress on Industrial and Applied Mathematics, ICIAM 2007, R. Jeltsch and G. Wanner, eds., European Mathematical Society, 2009, 337-364.doi: 10.4171/056-1/16. |
[4] |
A. Borzí and V. Schulz, Computational Optimization of Systems Governed by Partial Differential Equations, SIAM, 2012. |
[5] |
T. Bui-Thanh and O. Ghattas, Analysis of the Hessian for inverse scattering problems. Part I: Inverse shape scattering of acoustic waves, Inverse Problems, 28 (2012), 055001, 32pp.doi: 10.1088/0266-5611/28/5/055001. |
[6] |
_________, Analysis of the Hessian for inverse scattering problems. Part II: Inverse medium scattering of acoustic waves, Inverse Problems, 28 (2012), 055002. |
[7] |
_________, Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves. Inverse Problems and Imaging, 2013. |
[8] |
_________, Randomized maximum likelihood sampling for large-scale Bayesian inverse problems, In preparation, 2013. |
[9] |
_________, An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation, SIAM Journal of Uncertainty Quantification, 2 (2014), 203-222.doi: 10.1137/120894877. |
[10] |
T. Bui-Thanh, O. Ghattas, J. Martin and G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion, SIAM Journal on Scientific Computing, 35 (2013), A2494-A2523.doi: 10.1137/12089586X. |
[11] |
T. Bui-Thanh and M. A. Girolami, Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo, Inverse Problems, Special Issue, 30 (2014), 114014, 23pp.doi: 10.1088/0266-5611/30/11/114014. |
[12] |
F. P. Casey, J. J. Waterfall, R. N. Gutenkunst, C. R. Myers and J. P. Sethna, Variational method for estimating the rate of convergence of Marko-chain Monte Carlo algorithms, Phy. Rev. E., 78 (2008), 046704. |
[13] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, 1978. |
[14] |
S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White, MCMC methods for functions: Modifying old algorithms to make them faster, Statistical Science, 28 (2013), 424-446.doi: 10.1214/13-STS421. |
[15] |
M. Dashti, K. J. H. Law, A. M. Stuart and J. Voss, MAP estimators and their consistency in Bayesian nonparametric inverse problems, Inverse Problems, 29 (2013), 095017, 27pp.doi: 10.1088/0266-5611/29/9/095017. |
[16] |
S. Duane, A. D. Kennedy, B. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B, 195 (1987), 216-222.doi: 10.1016/0370-2693(87)91197-X. |
[17] |
J. N. Franklin, Well-posed stochastic extensions of ill-posed linear problems, Journal of Mathematical Analysis and Applications, 31 (1970), 682-716.doi: 10.1016/0022-247X(70)90017-X. |
[18] |
A. Gelman, G. O. Roberts and W. R. Gilks, Efficient Metropolis jumping rules, in Bayesian Statistics, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Oxford Univ Press, 5 (1996), 599-607. |
[19] |
M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (2011), 123-214.doi: 10.1111/j.1467-9868.2010.00765.x. |
[20] |
M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, Philadelphia, 2003. |
[21] |
H. Haario, M. Laine, A. Miravete and E. Saksman, DRAM: Efficient adaptive MCMC, Statistics and Computing, 16 (2006), 339-354.doi: 10.1007/s11222-006-9438-0. |
[22] |
M. Hairer, A. M. Stuart and J. Voss, Analysis of SPDEs arising in path sampling. part II: The nonlinear case, Annals of Applied Probability, 17 (2007), 1657-1706.doi: 10.1214/07-AAP441. |
[23] |
W. Keith Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97-109.doi: 10.1093/biomet/57.1.97. |
[24] |
E. Herbst, Gradient and Hessian-based MCMC for DSGE models, (2010). Unpublished manuscript. |
[25] |
M. Ilić, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, Frac. Calc. and A Anal., 8 (2005), 323-341. |
[26] |
S. Lasanen, Discretizations of Generalized Random Variables with Applications to Inverse Problems, PhD thesis, University of Oulu, 2002. |
[27] |
M. S. Lehtinen, L. Päivärinta and E. Somersalo, Linear inverse problems for generalized random variables, Inverse Problems, 5 (1989), 599-612.doi: 10.1088/0266-5611/5/4/011. |
[28] |
F. Lindgren, H. Rue and J. Lindström, An explicit link between gaussian fields and gaussian markov random fields: The stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73 (2011), 423-498.doi: 10.1111/j.1467-9868.2011.00777.x. |
[29] |
J. Martin, L. C. Wilcox, C. Burstedde and O. Ghattas, A stochastic Newton MCMC method for large-scale statistical inverse problems with application to seismic inversion, SIAM Journal on Scientific Computing, 34 (2012), A1460-A1487.doi: 10.1137/110845598. |
[30] |
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21 (1953), 1087-1092.doi: 10.1063/1.1699114. |
[31] |
R. M. Neal, Handbook of Markov Chain Monte Carlo, Chapman & Hall / CRC Press, 2010, ch. MCMC using Hamiltonian dynamics. |
[32] |
J. Nocedal and S. J. Wright, Numerical Optimization, Springer Verlag, Berlin, Heidelberg, New York, second ed., 2006. |
[33] |
M. Ottobre, N. S. Pillai, F. J. Pinski and A. M. Stuart, A function space HMC algorithm with second order langevin diffusion limit, Bernoulli, 22 (2016), 60-106, arXiv, arXiv:1308.0543 (2014).doi: 10.3150/14-BEJ621. |
[34] |
P. Piiroinen, Statistical Measurements, Experiments, and Applications, PhD thesis, Department of Mathematics and Statistics, University of Helsinki, 2005. |
[35] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambidge University Press, 1992.doi: 10.1017/CBO9780511666223. |
[36] |
Y. Qi and T. P. Minka, Hessian-based Markov chain Monte-Carlo algorithms, in First Cape Cod Workshop on Monte Carlo Methods, Cape Cod, MA, USA, September 2002. |
[37] |
C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Springer Texts in Statistics), Springer-Verlag, New York, 2004.doi: 10.1007/978-1-4757-4145-2. |
[38] |
G. O. Roberts, A. Gelman and W. R. Gilks, Weak convergence and optimal scaling of random walk Metropolis algorithms, The Annals of Applied Probability, 7 (1997), 110-120.doi: 10.1214/aoap/1034625254. |
[39] |
G. O. Roberts and J. S. Rosenthal, Optimal scaling of discrete approximations to Langevin diffusions, J. R. Statist. Soc. B, 60 (1997), 255-268.doi: 10.1111/1467-9868.00123. |
[40] |
J. Rosenthal, Optimal proposal distributions and adaptive MCMC, in Handbook of Markov chain Monte Carlo, Steve Brooks, Andrew Gelman, Galin L. Jones, and Xiao-Li Meng, eds., CRC Press, 2011, 93-112. |
[41] |
P. J. Rossky, J. D. Doll and H. L. Friedman, Brownian dynamics as smart Monte Carlo simulation, J. Chem. Phys., 69 (1978), p. 4268.doi: 10.1063/1.436415. |
[42] |
D. P. Simpson, Krylov subpsace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous Diffusion, PhD thesis, School of Mathematical Sciences Qeensland University of Technology, 2008. |
[43] |
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica, 19 (2010), 451-559.doi: 10.1017/S0962492910000061. |
[44] |
A. M. Stuart, J. Voss and P. Wiberg, Conditional path sampling of SDEs and the Langevin MCMC method, Communications in Mathematical Sciences, 2 (2004), 685-697.doi: 10.4310/CMS.2004.v2.n4.a7. |
[45] |
L. Tierney, A note on Metropolis-Hastings kernels for general state spaces, Annals of Applied Probability, 8 (1998), 1-9.doi: 10.1214/aoap/1027961031. |
[46] |
C. Vacar, J.-F. Giovannelli and Y. Berthoumieu, Langevin and Hessian with Fisher approximation stochastic sampling for parameter estimation of structured covariance, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2011), 3964-3967.doi: 10.1109/ICASSP.2011.5947220. |
[47] |
B. Vexler, Adaptive finite element methods for parameter identification problems, Model Based Parameter Estimation, Volume 4 of the series Contributions in Mathematical and Computational Sciences, (2012), 31-54.doi: 10.1007/978-3-642-30367-8_2. |
[48] |
C. R. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.doi: 10.1137/1.9780898717570. |
[49] |
Y. Zhang and C. Sutton, Quasi-Newton methods for Markov chain Monte Carlo, in Advances in Neural Information Processing Systems, J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, and K. Q. Weinberger, eds., vol. 24, 2011. |