Advanced Search
Article Contents
Article Contents

Team organization may help swarms of flies to become invisible in closed waveguides

Abstract Related Papers Cited by
  • We are interested in a time harmonic acoustic problem in a waveguide containing flies. The flies are modelled by small sound soft obstacles. We explain how they should arrange to become invisible to an observer sending waves from $-\infty$ and measuring the resulting scattered field at the same position. We assume that the flies can control their position and/or their size. Both monomodal and multimodal regimes are considered. On the other hand, we show that any sound soft obstacle (non necessarily small) embedded in the waveguide always produces some non exponentially decaying scattered field at $+\infty$ for wavenumbers smaller than a constant that we explicit. As a consequence, for such wavenumbers, the flies cannot be made completely invisible to an observer equipped with a measurement device located at $+\infty$.
    Mathematics Subject Classification: 35Q60, 65N21, 35R30.


    \begin{equation} \\ \end{equation}
  • [1]

    A. Alù, M. G. Silveirinha and N. Engheta, Transmission-line analysis of $\varepsilon$-near-zero-filled narrow channels, Phys. Rev. E, 78 (2008), 016604.


    T. Arens, D. Gintides and A. Lechleiter, Direct and inverse medium scattering in a three-dimensional homogeneous planar waveguide, SIAM J. Appl. Math., 71 (2011), 753-772.doi: 10.1137/100806333.


    A. Bendali, P. H. Cocquet and S. Tordeux, Approximation by multipoles of the multiple acoustic scattering by small obstacles in three dimensions and application to the foldy theory of isotropic scattering, Arch. Ration. Mech. Anal., 219 (2016), 1017-1059.doi: 10.1007/s00205-015-0915-5.


    A.-S. Bonnet-Ben Dhia, L. Chesnel and S. A. Nazarov, Non-scattering wavenumbers and far field invisibility for a finite set of incident/scattering directions, Inverse Problems, 31 (2015), 045006, 24pp.doi: 10.1088/0266-5611/31/4/045006.


    A.-S. Bonnet-Ben Dhia, E. Lunéville, Y. Mbeutcha and S. A. Nazarov, A method to build non-scattering perturbations of two-dimensional acoustic waveguides, Math. Methods Appl. Sci., 2015.


    A.-S. Bonnet-Ben Dhia and S. A. Nazarov, Obstacles in acoustic waveguides becoming "invisible'' at given frequencies, Acoust. Phys., 59 (2013), 633-639.


    A.-S. Bonnet-Ben Dhia, S. A. Nazarov and J. Taskinen, Underwater topography "invisible'' for surface waves at given frequencies, Wave Motion, 57 (2015), 129-142.doi: 10.1016/j.wavemoti.2015.03.008.


    L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A modal formulation, Inverse Problems, 24 (2008), 015018,20pp.doi: 10.1088/0266-5611/24/1/015018.


    F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory inverse problems and applications, Inside Out 60, 2013.


    G. Cardone, S. A. Nazarov and C. Perugia, A gap in the essential spectrum of a cylindrical waveguide with a periodic aperturbation of the surface, Math. Nachr., 283 (2010), 1222-1244.doi: 10.1002/mana.200910025.


    G. Cardone, S. A. Nazarov and K. Ruotsalainen, Asymptotic behaviour of an eigenvalue in the continuous spectrum of a narrowed waveguide, Sb. Math., 203 (2012), 153-182.doi: 10.1070/SM2012v203n02ABEH004217.


    M. Cassier and C. Hazard, Multiple scattering of acoustic waves by small sound-soft obstacles in two dimensions: mathematical justification of the Foldy-Lax model, Wave Motion, 50 (2013), 18-28.doi: 10.1016/j.wavemoti.2012.06.001.


    H. Chen, C. T. Chan and P. Sheng, Transformation optics and metamaterials, Nat. Mater., 9 (2010), 387-396.doi: 10.1038/nmat2743.


    M. Cheney, The linear sampling method and the music algorithm, Inverse Problems, 17 (2001), 591-595.doi: 10.1088/0266-5611/17/4/301.


    L. Chesnel, X. Claeys and S. A. Nazarov, Spectrum of a diffusion operator with coefficient changing sign over a small inclusion, Z. Angew. Math. Phys., 66 (2015), 2173-2196.doi: 10.1007/s00033-015-0559-1.


    L. Chesnel, N. Hyvönen and S. Staboulis, Construction of indistinguishable conductivity perturbations for the point electrode model in electrical impedance tomography, SIAM J. Appl. Math., 75 (2015), 2093-2109.doi: 10.1137/15M1006404.


    X. Claeys, On the theoretical justification of Pocklington's equation, Math. Models Meth. App. Sci., 19 (2009), 1325-1355.doi: 10.1142/S0218202509003802.


    D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.doi: 10.1088/0266-5611/12/4/003.


    D. Colton, M. Piana and R. Potthast, A simple method using morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.doi: 10.1088/0266-5611/13/6/005.


    S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith and J. Pendry, Full-wave simulations of electromagnetic cloaking structures, Phys. Rev. E, 74 (2006), 036621.doi: 10.1103/PhysRevE.74.036621.


    B. Edwards, A. Alù, M. G. Silveirinha and N. Engheta, Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects, J. Appl. Phys., 105 (2009), 044905.doi: 10.1063/1.3074506.


    D. V. Evans, M. McIver and R. Porter, Transparency of structures in water waves, In Proceedings of 29th International Workshop on Water Waves and Floating Bodies, 2014.


    R. Fleury and A. Alù, Extraordinary sound transmission through density-near-zero ultranarrow channels, Phys. Rev. Lett., 111 (2013), 055501.doi: 10.1103/PhysRevLett.111.055501.


    L. L. Foldy, The multiple scattering of waves. i. general theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67 (1945), 107-119.doi: 10.1103/PhysRev.67.107.


    Y. Fu, Y. Xu and H. Chen, Additional modes in a waveguide system of zero-index-metamaterials with defects, Scientific Reports, 4 (2014), 1-7.doi: 10.1038/srep06428.


    A. Greenleaf, Y. Kurylev, M. Lassas and G. Uhlmann, Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 55-97.doi: 10.1090/S0273-0979-08-01232-9.


    A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Birkhäuser, 2006.


    E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, volume 31, Amer. Math. Soc., 1957.


    I. V. Kamotskii and S. A. Nazarov, Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators, In Proceedings of the St. Petersburg Mathematical Society, Vol. VI, volume 199 of Amer. Math. Soc. Transl. Ser. 2, pages 127-181. Amer. Math. Soc., Providence, RI, 2000.doi: 10.1090/trans2/199/04.


    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, reprint of the corr. print. of the 2nd ed. 1980 edition, 1995.


    A. Kirsch, The music-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18 (2002), 1025-1040.doi: 10.1088/0266-5611/18/4/306.


    V. A. Kondratiev, Boundary-value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16 (1967), 209-292.


    N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.


    J.-L. Lions and E. Magenes, Problèmes Aux Limites non Homogènes et Applications, Dunod, 1968.


    P. A. Martin, Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles, Number 107. Cambridge University Press, 2006.doi: 10.1017/CBO9780511735110.


    V. G. Maz'ya, S. A. Nazarov and B. A. Plamenevskiĭ, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Birkhäuser, Basel, 2000.


    S. A. Nazarov, The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes, Russ. Math. Surv., 54 (1999), 947-1014.doi: 10.1070/rm1999v054n05ABEH000204.


    S. A. Nazarov, Properties of spectra of boundary value problems in cylindrical and quasicylindrical domains, In Sobolev Spaces in Mathematics II, Springer, 9 (2009), 261-309.doi: 10.1007/978-0-387-85650-6_12.


    S. A. Nazarov, Opening of a gap in the continuous spectrum of a periodically perturbed waveguide, Mathematical Notes, 87 (2010), 738-756.doi: 10.1134/S0001434610050123.


    S. A. Nazarov, Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide, Theor. Math. Phys., 167 (2011), 606-627.doi: 10.1007/s11232-011-0046-6.


    S. A. Nazarov, Eigenvalues of the laplace operator with the Neumann conditions at regular perturbed walls of a waveguide, J. Math. Sci., 172 (2011), 555-588.doi: 10.1007/s10958-011-0206-0.


    S. A. Nazarov, Trapped waves in a cranked waveguide with hard walls, Acoust. Phys., 57 (2011), 764-771.


    S. A. Nazarov, The asymptotic analysis of gaps in the spectrum of a waveguide perturbed with a periodic family of small voids, J. Math. Sci., New York, 186 (2012), 247-301.doi: 10.1007/s10958-012-0985-y.


    S. A. Nazarov, Enforced stability of an eigenvalue in the continuous spectrum of a waveguide with an obstacle, Comput. Math. and Math. Phys., 52 (2012), 448-464.doi: 10.1134/S096554251203013X.


    S. A. Nazarov, Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide, Funct. Anal. Appl., 47 (2013), 195-209.


    S. A. Nazarov and B. A. Plamenevskiĭ, Elliptic problems in domains with piecewise smooth boundaries, volume 13 of Expositions in Mathematics,


    V. C. Nguyen, L. Chen and K. Halterman, Total transmission and total reflection by zero index metamaterials with defects, Phys. Rev. Lett., 105 (2010), 233908.doi: 10.1103/PhysRevLett.105.233908.


    A. Ourir, A. Maurel and V. Pagneux, Tunneling of electromagnetic energy in multiple connected leads using $\varepsilon$-near-zero materials, Opt. Lett., 38 (2013), 2092-2094.


    G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951.


    A. G. Ramm, Wave Scattering By Small Bodies of Arbitrary Shapes, Springer, 2005.doi: 10.1142/9789812701206.


    C. W. Therrien, Discrete Random Signals and Statistical Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1992.

  • 加载中

Article Metrics

HTML views() PDF downloads(154) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint