November  2016, 10(4): 1057-1085. doi: 10.3934/ipi.2016032

A globally convergent numerical method for a 1-d inverse medium problem with experimental data

1. 

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28213, United States, United States

2. 

US Army Research Laboratory, 2800 Powder Mill Road, Adelphy, MD 20783-1197, United States, United States

Received  February 2016 Revised  April 2016 Published  October 2016

In this paper, a reconstruction method for the spatially distributed dielectric constant of a medium from the back scattering wave field in the frequency domain is considered. Our approach is to propose a globally convergent algorithm, which does not require any knowledge of a small neighborhood of the solution of the inverse problem in advance. The Quasi-Reversibility Method (QRM) is used in the algorithm. The convergence of the QRM is proved via a Carleman estimate. The method is tested on both computationally simulated and experimental data.
Citation: Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems & Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032
References:
[1]

L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems,, Springer, (2012).  doi: 10.1007/978-1-4419-7805-9.  Google Scholar

[2]

L. Beilina and M. V. Klibanov, A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data,, J. Inverse and Ill-Posed Problems, 20 (2012), 512.  doi: 10.1515/jip-2012-0063.  Google Scholar

[3]

L. Beilina, Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for the Maxwell's system in time domain,, Central European Journal of Mathematics, 11 (2013), 702.  doi: 10.2478/s11533-013-0202-3.  Google Scholar

[4]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains,, Applicable Analalysis, 89 (2010), 1745.  doi: 10.1080/00036810903393809.  Google Scholar

[5]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[6]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23.  doi: 10.3934/ipi.2014.8.23.  Google Scholar

[7]

H. T. Chuah, K. Y. Lee and T. W. Lau, Dielectric constants of rubber and oil palm leaf samples at X-band,, IEEE Trans. on Geoscience and Remote Sensing, 33 (1995), 221.  doi: 10.1109/36.368205.  Google Scholar

[8]

S. I. Kabanikhin, On linear regularization of multidimensional inverse problems for hyperbolic equations,, Soviet Mathematics Doklady, 40 (1990), 579.   Google Scholar

[9]

S. I. Kabanikhin, A. D. Satybaev and M. A. Shishlenin, Direct Methods of Solving Inverse Hyperbolic Problems,, VSP, (2005).   Google Scholar

[10]

S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov and M. A. Shishlenin, Numerical solution of the multidimensional Gelfand-Levitan equation,, J. Inverse and Ill-Posed Problems, 23 (2015), 439.  doi: 10.1515/jiip-2014-0018.  Google Scholar

[11]

A. L. Karchevsky, M. V. Klibanov, L. Nguyen, N. Pantong and A. Sullivan, The Krein method and the globally convergent method for experimental data,, Applied Numerical Mathematics, 74 (2013), 111.  doi: 10.1016/j.apnum.2013.09.003.  Google Scholar

[12]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace's equation,, SIAM J. Appl. Math, 51 (1991), 1653.  doi: 10.1137/0151085.  Google Scholar

[13]

M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability for the hyperbolic Cauchy problem with time dependent data,, Inverse Problems, 7 (1991), 577.  doi: 10.1088/0266-5611/7/4/007.  Google Scholar

[14]

M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,, VSP, (2004).  doi: 10.1515/9783110915549.  Google Scholar

[15]

M. V. Klibanov and N. T. Thành, Recovering dielectric constants of explosives via a globally strictly convex cost functional,, SIAM J. Appl. Math, 75 (2015), 518.  doi: 10.1137/140981198.  Google Scholar

[16]

M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems,, Applied Numerical Mathematics, 94 (2015), 46.  doi: 10.1016/j.apnum.2015.02.003.  Google Scholar

[17]

M. G. Krein, On a method of effective solution of an inverse boundary problem,, Dokl. Akad. Nauk SSSR, 94 (1954), 987.   Google Scholar

[18]

A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/9/095007.  Google Scholar

[19]

A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Quantitative image recovery from measured blind backscattered data using a globally convergent inverse method,, IEEE Transaction for Geoscience and Remote Sensing, 51 (2013), 2937.  doi: 10.1109/TGRS.2012.2211885.  Google Scholar

[20]

R. Lattes and J.-L. Lions, The Method of Quasireversibility: Applications to Partial Differential Equations,, Elsevier, (1969).   Google Scholar

[21]

D. Lesnic, G. Wakefield, B. D. Sleeman and J. R. Okendon, Determination of the index of refraction of ant-reflection coatings,, Mathematics-in-Industry Case Studies Journal, 2 (2010), 155.   Google Scholar

[22]

B. M. Levitan, Inverse Sturm-Liouville Problems,, VSP, (1987).   Google Scholar

[23]

N. Nguyen, D. Wong, M. Ressler, F. Koenig, B. Stanton, G. Smith, J. Sichina and K. Kappra, Obstacle avolidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse Reconstruction (UWB SIRE) forward imaging radar,, Proc. SPIE 6553 (2007), 6553 (2007).   Google Scholar

[24]

V. G. Romanov, Inverse Problems of Mathematical Physics,, VNU Science Press, (1987).   Google Scholar

[25]

C. Sanderson, Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments,, Technical Report, (2010).   Google Scholar

[26]

J. A. Scales, M. L. Smith and T. L. Fischer, Global optimization methods for multimodal inverse problems,, J. Computational Physics, 103 (1992), 258.   Google Scholar

[27]

, Table of dielectric constants,, , ().   Google Scholar

[28]

N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method,, SIAM Journal on Scientific Computing, 36 (2014).  doi: 10.1137/130924962.  Google Scholar

[29]

N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Imaging of buried objects from experimental backscattering time dependent measurements using a globally convergent inverse algorithm,, SIAM J. Imaging Sciences, 8 (2015), 757.  doi: 10.1137/140972469.  Google Scholar

[30]

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems,, Kluwer, (1995).  doi: 10.1007/978-94-015-8480-7.  Google Scholar

[31]

B. R. Vainberg, Principles of radiation, limiting absorption and limiting amplitude in the general theory of partial differential equations,, Russian Math. Surveys, 21 (1966), 115.   Google Scholar

[32]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics,, Gordon and Breach Science Publishers, (1989).   Google Scholar

[33]

V. S. Vladimirov, Equations of Mathematical Physics,, M. Dekker, (1971).   Google Scholar

show all references

References:
[1]

L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems,, Springer, (2012).  doi: 10.1007/978-1-4419-7805-9.  Google Scholar

[2]

L. Beilina and M. V. Klibanov, A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data,, J. Inverse and Ill-Posed Problems, 20 (2012), 512.  doi: 10.1515/jip-2012-0063.  Google Scholar

[3]

L. Beilina, Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for the Maxwell's system in time domain,, Central European Journal of Mathematics, 11 (2013), 702.  doi: 10.2478/s11533-013-0202-3.  Google Scholar

[4]

L. Bourgeois and J. Dardé, About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains,, Applicable Analalysis, 89 (2010), 1745.  doi: 10.1080/00036810903393809.  Google Scholar

[5]

L. Bourgeois and J. Dardé, A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data,, Inverse Problems, 26 (2010).  doi: 10.1088/0266-5611/26/9/095016.  Google Scholar

[6]

L. Bourgeois and J. Dardé, The "exterior approach" to solve the inverse obstacle problem for the Stokes system,, Inverse Problems and Imaging, 8 (2014), 23.  doi: 10.3934/ipi.2014.8.23.  Google Scholar

[7]

H. T. Chuah, K. Y. Lee and T. W. Lau, Dielectric constants of rubber and oil palm leaf samples at X-band,, IEEE Trans. on Geoscience and Remote Sensing, 33 (1995), 221.  doi: 10.1109/36.368205.  Google Scholar

[8]

S. I. Kabanikhin, On linear regularization of multidimensional inverse problems for hyperbolic equations,, Soviet Mathematics Doklady, 40 (1990), 579.   Google Scholar

[9]

S. I. Kabanikhin, A. D. Satybaev and M. A. Shishlenin, Direct Methods of Solving Inverse Hyperbolic Problems,, VSP, (2005).   Google Scholar

[10]

S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov and M. A. Shishlenin, Numerical solution of the multidimensional Gelfand-Levitan equation,, J. Inverse and Ill-Posed Problems, 23 (2015), 439.  doi: 10.1515/jiip-2014-0018.  Google Scholar

[11]

A. L. Karchevsky, M. V. Klibanov, L. Nguyen, N. Pantong and A. Sullivan, The Krein method and the globally convergent method for experimental data,, Applied Numerical Mathematics, 74 (2013), 111.  doi: 10.1016/j.apnum.2013.09.003.  Google Scholar

[12]

M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace's equation,, SIAM J. Appl. Math, 51 (1991), 1653.  doi: 10.1137/0151085.  Google Scholar

[13]

M. V. Klibanov and J. Malinsky, Newton-Kantorovich method for 3-dimensional potential inverse scattering problem and stability for the hyperbolic Cauchy problem with time dependent data,, Inverse Problems, 7 (1991), 577.  doi: 10.1088/0266-5611/7/4/007.  Google Scholar

[14]

M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications,, VSP, (2004).  doi: 10.1515/9783110915549.  Google Scholar

[15]

M. V. Klibanov and N. T. Thành, Recovering dielectric constants of explosives via a globally strictly convex cost functional,, SIAM J. Appl. Math, 75 (2015), 518.  doi: 10.1137/140981198.  Google Scholar

[16]

M. V. Klibanov, Carleman estimates for the regularization of ill-posed Cauchy problems,, Applied Numerical Mathematics, 94 (2015), 46.  doi: 10.1016/j.apnum.2015.02.003.  Google Scholar

[17]

M. G. Krein, On a method of effective solution of an inverse boundary problem,, Dokl. Akad. Nauk SSSR, 94 (1954), 987.   Google Scholar

[18]

A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm,, Inverse Problems, 28 (2012).  doi: 10.1088/0266-5611/28/9/095007.  Google Scholar

[19]

A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen and M. A. Fiddy, Quantitative image recovery from measured blind backscattered data using a globally convergent inverse method,, IEEE Transaction for Geoscience and Remote Sensing, 51 (2013), 2937.  doi: 10.1109/TGRS.2012.2211885.  Google Scholar

[20]

R. Lattes and J.-L. Lions, The Method of Quasireversibility: Applications to Partial Differential Equations,, Elsevier, (1969).   Google Scholar

[21]

D. Lesnic, G. Wakefield, B. D. Sleeman and J. R. Okendon, Determination of the index of refraction of ant-reflection coatings,, Mathematics-in-Industry Case Studies Journal, 2 (2010), 155.   Google Scholar

[22]

B. M. Levitan, Inverse Sturm-Liouville Problems,, VSP, (1987).   Google Scholar

[23]

N. Nguyen, D. Wong, M. Ressler, F. Koenig, B. Stanton, G. Smith, J. Sichina and K. Kappra, Obstacle avolidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse Reconstruction (UWB SIRE) forward imaging radar,, Proc. SPIE 6553 (2007), 6553 (2007).   Google Scholar

[24]

V. G. Romanov, Inverse Problems of Mathematical Physics,, VNU Science Press, (1987).   Google Scholar

[25]

C. Sanderson, Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Computationally Intensive Experiments,, Technical Report, (2010).   Google Scholar

[26]

J. A. Scales, M. L. Smith and T. L. Fischer, Global optimization methods for multimodal inverse problems,, J. Computational Physics, 103 (1992), 258.   Google Scholar

[27]

, Table of dielectric constants,, , ().   Google Scholar

[28]

N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method,, SIAM Journal on Scientific Computing, 36 (2014).  doi: 10.1137/130924962.  Google Scholar

[29]

N. T. Thành, L. Beilina, M. V. Klibanov and M. A. Fiddy, Imaging of buried objects from experimental backscattering time dependent measurements using a globally convergent inverse algorithm,, SIAM J. Imaging Sciences, 8 (2015), 757.  doi: 10.1137/140972469.  Google Scholar

[30]

A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems,, Kluwer, (1995).  doi: 10.1007/978-94-015-8480-7.  Google Scholar

[31]

B. R. Vainberg, Principles of radiation, limiting absorption and limiting amplitude in the general theory of partial differential equations,, Russian Math. Surveys, 21 (1966), 115.   Google Scholar

[32]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics,, Gordon and Breach Science Publishers, (1989).   Google Scholar

[33]

V. S. Vladimirov, Equations of Mathematical Physics,, M. Dekker, (1971).   Google Scholar

[1]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[2]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[3]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[4]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[5]

Lei Guo, Gui-Hua Lin. Globally convergent algorithm for solving stationary points for mathematical programs with complementarity constraints via nonsmooth reformulations. Journal of Industrial & Management Optimization, 2013, 9 (2) : 305-322. doi: 10.3934/jimo.2013.9.305

[6]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[7]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[8]

Krunal B. Kachhia, Abdon Atangana. Electromagnetic waves described by a fractional derivative of variable and constant order with non singular kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020172

[9]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[10]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[11]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[12]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[13]

Loc H. Nguyen, Qitong Li, Michael V. Klibanov. A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media. Inverse Problems & Imaging, 2019, 13 (5) : 1067-1094. doi: 10.3934/ipi.2019048

[14]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[15]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[16]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[17]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[18]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[19]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[20]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial & Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (2)

[Back to Top]