\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Model-based reconstruction for magnetic particle imaging in 2D and 3D

Abstract Related Papers Cited by
  • We contribute to the mathematical modeling and analysis of magnetic particle imaging which is a promising new in-vivo imaging modality. Concerning modeling, we develop a structured decomposition of the imaging process and extract its core part which we reveal to be common to all previous contributions in this context. The central contribution of this paper is the development of reconstruction formulae for MPI in 2D and 3D. Until now, in the multivariate setup, only time consuming measurement-based approaches are available, whereas reconstruction formulae are only available in 1D. The 2D and the 3D (describing the real world) reconstruction formulae which we derive here are significantly different from the 1D situation -- in particular there is no Dirac property in dimensions greater than one in the high resolution limit. As a further result of our analysis, we conclude that the reconstruction problem in MPI is severely ill-posed. Finally, we obtain a model-based reconstruction algorithm.
    Mathematics Subject Classification: Primary: 92C55, 94A12, 94A08; Secondary: 44A35, 65R32.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, vol. 254, Clarendon Press, Oxford, 2000.

    [2]

    M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, CRC press, Boca Raton, 1998.doi: 10.1887/0750304359.

    [3]

    F. Bornemann and T. März, Fast image inpainting based on coherence transport, Joural of Mathematical Imaging and Vision, 28 (2007), 259-278.doi: 10.1007/s10851-007-0017-6.

    [4]

    S. Chikazumi and S. Charap, Physics of Magnetism, Krieger Publishing, New York, 1978.

    [5]

    H. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.doi: 10.1007/978-94-009-1740-8.

    [6]

    R. Ferguson, K. Minard and K. Krishnan, Optimization of nanoparticle core size for magnetic particle imaging, Journal of Magnetism and Magnetic Materials, 321 (2009), 1548-1551.doi: 10.1016/j.jmmm.2009.02.083.

    [7]

    B. Gleich and J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles, Nature, 435 (2005), 1214-1217.doi: 10.1038/nature03808.

    [8]

    B. Gleich, J. Weizenecker and J. Borgert, Experimental results on fast 2D-encoded magnetic particle imaging, Physics in Medicine and Biology, 53 (2008), N81-N84.doi: 10.1088/0031-9155/53/6/N01.

    [9]

    G. Golub and C. Van Loan, Matrix Computations, JHU Press, 2012.

    [10]

    P. Goodwill and S. Conolly, The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, {SNR}, {SAR}, and magnetostimulation, IEEE Transactions on Medical Imaging, 29 (2010), 1851-1859.doi: 10.1109/TMI.2010.2052284.

    [11]

    P. Goodwill and S. Conolly, Multidimensional X-space magnetic particle imaging, IEEE Transactions on Medical Imaging, 30 (2011), 1581-1590.doi: 10.1109/TMI.2011.2125982.

    [12]

    P. Goodwill, E. Saritas, L. Croft, T. Kim, K. Krishnan, D. Schaffer and S. Conolly, X-space mpi: Magnetic nanoparticles for safe medical imaging, Advanced Materials, 24 (2012), 3870-3877.doi: 10.1002/adma.201200221.

    [13]

    M. Grüttner, T. Knopp, J. Franke, M. Heidenreich, J. Rahmer, A. Halkola, C. Kaethner, J. Borgert and T. Buzug, On the formulation of the image reconstruction problem in magnetic particle imaging, Biomedical Engineering, 58 (2013), 583-591.

    [14]

    S. Helgason, The Radon Transform, Springer, 1999.

    [15]

    D. Jiles, Introduction to Magnetism and Magnetic Materials, CRC press, 1998.

    [16]

    A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems, vol. 120, Springer, Heidelberg, 2011.doi: 10.1007/978-1-4419-8474-6.

    [17]

    T. Knopp and T. Buzug, Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation, Springer, 2012.doi: 10.1007/978-3-642-04199-0.

    [18]

    T. Knopp, Effiziente Rekonstruktion und alternative Spulentopologien für Magnetic Particle Imaging, Dissertation, University of Lübeck, 2011.doi: 10.1007/978-3-8348-8129-8.

    [19]

    T. Knopp, S. Biederer, T. Sattel, M. Erbe and T. Buzug, Prediction of the spatial resolution of magnetic particle imaging using the modulation transfer function of the imaging process, IEEE Transactions on Medical Imaging, 30 (2011), 1284-1292.doi: 10.1109/TMI.2011.2113188.

    [20]

    T. Knopp, S. Biederer, T. Sattel, J. Rahmer, J. Weizenecker, B. Gleich, J. Borgert and T. Buzug, 2D model-based reconstruction for magnetic particle imaging, Medical Physics, 37 (2010), 485-491.doi: 10.1118/1.3271258.

    [21]

    T. Knopp, M. Erbe, T. Sattel, S. Biederer and T. Buzug, A Fourier slice theorem for magnetic particle imaging using a field-free line, Inverse Problems, 27 (2011), 095004, 14pp.doi: 10.1088/0266-5611/27/9/095004.

    [22]

    T. Knopp, J. Rahmer, T. Sattel, S. Biederer, J. Weizenecker, B. Gleich, J. Borgert and T. Buzug, Weighted iterative reconstruction for magnetic particle imaging, Physics in Medicine and Biology, 55 (2010), 1577-1589.

    [23]

    T. Knopp, T. Sattel, S. Biederer, J. Rahmer, J. Weizenecker, B. Gleich, J. Borgert and T. Buzug, Model-Based Reconstruction for magnetic particle imaging, IEEE Transactions on Medical Imaging, 29 (2010), 12-18.

    [24]

    J. Konkle, P. Goodwill and S. Conolly, Development of a field free line magnet for projection MPI, in SPIE Medical Imaging, 7965 (2011), 79650X.doi: 10.1117/12.878435.

    [25]

    D. Kuhl and R. Edwards, Image separation radioisotope scanning, Radiology, 80 (1963), 653-662.doi: 10.1148/80.4.653.

    [26]

    J. Lampe, C. Bassoy, J. Rahmer, J. Weizenecker, H. Voss, B. Gleich and J. Borgert, Fast reconstruction in magnetic particle imaging, Physics in Medicine and Biology, 57 (2012), 1113-1134.doi: 10.1088/0031-9155/57/4/1113.

    [27]

    J. Lawrence, A Catalog of Special Plane Curves, Courier Corporation, 2013.

    [28]

    A. Louis, Inverse Und Schlecht Gestellte Probleme, Teubner, Stuttgart, 1989.doi: 10.1007/978-3-322-84808-6.

    [29]

    T. März, Image inpainting based on coherence transport with adapted distance functions, SIAM Journal on Imaging Sciences, 4 (2011), 981-1000.doi: 10.1137/100807296.

    [30]

    T. März, A well-posedness framework for inpainting based on coherence transport, Foundations of Computational Mathematics, 15 (2015), 973-1033.doi: 10.1007/s10208-014-9199-7.

    [31]

    J. Rahmer, J. Weizenecker, B. Gleich and J. Borgert, Signal encoding in magnetic particle imaging: Properties of the system function, BMC Medical Imaging, 9 (2009), p4.doi: 10.1186/1471-2342-9-4.

    [32]

    J. Rahmer, J. Weizenecker, B. Gleich and J. Borgert, Analysis of a 3-D system function measured for magnetic particle imaging, IEEE Transactions on Medical Imaging, 31 (2012), 1289-1299.doi: 10.1109/TMI.2012.2188639.

    [33]

    L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F.

    [34]

    E. Saritas, P. Goodwill, L. Croft, J. Konkle, K. Lu, B. Zheng and S. Conolly, Magnetic particle imaging (MPI) for NMR and MRI researchers, Journal of Magnetic Resonance, 229 (2013), 116-126.doi: 10.1016/j.jmr.2012.11.029.

    [35]

    T. Sattel, T. Knopp, S. Biederer, B. Gleich, J. Weizenecker, J. Borgert and T. Buzug, Single-sided device for magnetic particle imaging, Journal of Physics D: Applied Physics, 42 (2009), 022001.doi: 10.1088/0022-3727/42/2/022001.

    [36]

    O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Springer, 2009.

    [37]

    H. Schomberg, Magnetic particle imaging: Model and reconstruction, in 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010, 992-995.doi: 10.1109/ISBI.2010.5490155.

    [38]

    M. Storath and A. Weinmann, Fast partitioning of vector-valued images, SIAM Journal on Imaging Sciences, 7 (2014), 1826-1852.doi: 10.1137/130950367.

    [39]

    M. Storath, A. Weinmann, J. Frikel and M. Unser, Joint image reconstruction and segmentation using the Potts model, Inverse Problems, 31 (2015), 025003, 29pp.doi: 10.1088/0266-5611/31/2/025003.

    [40]

    M. Ter-Pogossian, M. Phelps, E. Hoffman and N. Mullani, A positron-emission transaxial tomograph for nuclear imaging (PETT), Radiology, 114 (1975), 89-98.doi: 10.1148/114.1.89.

    [41]

    A. Weinmann, M. Storath and L. Demaret, The $L^1$-Potts functional for robust jump-sparse reconstruction, SIAM Journal on Numerical Analysis, 53 (2015), 644-673.doi: 10.1137/120896256.

    [42]

    A. Weinmann and M. Storath, Iterative Potts and Blake-Zisserman minimization for the recovery of functions with discontinuities from indirect measurements, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2015), 20140638, 25pp.doi: 10.1098/rspa.2014.0638.

    [43]

    J. Weizenecker, B. Gleich and J. Borgert, Magnetic particle imaging using a field free line, Journal of Physics D: Applied Physics, 41 (2008), 105-114.doi: 10.1088/0022-3727/41/10/105009.

    [44]

    J. Weizenecker, J. Borgert and B. Gleich, A simulation study on the resolution and sensitivity of magnetic particle imaging, Physics in Medicine and Biology, 52 (2007), 6363-6374.doi: 10.1088/0031-9155/52/21/001.

    [45]

    J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke and J. Borgert, Three-dimensional real-time in vivo magnetic particle imaging, Physics in Medicine and Biology, 54 (2009), L1-L10.

    [46]

    B. Zheng, T. Vazin, W. Yang, P. Goodwill, E. Saritas, L. Croft, D. Schaffer and S. Conolly, Quantitative stem cell imaging with magnetic particle imaging, in IEEE International Workshop on Magnetic Particle Imaging, 2013, p1.doi: 10.1109/IWMPI.2013.6528323.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(545) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return