November  2016, 10(4): 1111-1139. doi: 10.3934/ipi.2016034

Location of eigenvalues for the wave equation with dissipative boundary conditions

1. 

Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence

Received  June 2015 Revised  March 2016 Published  October 2016

We examine the location of the eigenvalues of the generator $G$ of a semi-group $V(t) = e^{tG},\: t \geq 0,$ related to the wave equation in an unbounded domain $\Omega \subset \mathbb{R}^d$ with dissipative boundary condition $\partial_{\nu}u - \gamma(x) \partial_t u = 0$ on $\Gamma = \partial \Omega.$ We study two cases: $(A): \: 0 < \gamma(x) < 1,\: \forall x \in \Gamma$ and $(B):\: 1 < \gamma(x), \: \forall x \in \Gamma.$ We prove that for every $0 < \epsilon \ll 1,$ the eigenvalues of $G$ in the case $(A)$ lie in the region $\Lambda_{\epsilon} = \{ z \in \mathbb{C}:\: |Re z | \leq C_{\epsilon} (|Im z|^{\frac{1}{2} + \epsilon} + 1), \: Re z < 0\},$ while in the case $(B)$ for every $0 < \epsilon \ll 1$ and every $N \in \mathbb{N}$ the eigenvalues lie in $\Lambda_{\epsilon} \cup {\mathcal R}_N,$ where ${\mathcal R}_N = \{z \in \mathbb{C}:\: |Im z| \leq C_N (|Re z| + 1)^{-N},\: Re z < 0\}.$
Citation: Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems and Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034
References:
[1]

F. Cardoso, G. Popov and G. Vodev, Asymptotic of the number of resonances in the transmission problem, Comm. PDE, 26 (2001), 1811-1859. doi: 10.1081/PDE-100107460.

[2]

F. Colombini, V. Petkov and J. Rauch, Spectral problems for non elliptic symmetric systems with dissipative boundary conditions, J. Funct. Anal., 267 (2014), 1637-1661. doi: 10.1016/j.jfa.2014.06.018.

[3]

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in Semi-Classical Limits, London Mathematical Society, Lecture Notes Series, 268, Cambridge University Press, 1999. doi: 10.1017/CBO9780511662195.

[4]

V. Georgiev and Ja. Arnaoudov, Inverse scattering problem for dissipative wave equation, Mat. App. Comput., 9 (1990), 59-78.

[5]

P. Lax and R. Phillips, Scattering Theory, $2^{nd}$ edition, Academic Press, New York, 1989.

[6]

P. Lax and R. Phillips, Scattering theory for dissipative systems, J. Funct. Anal., 14 (1973), 172-235. doi: 10.1016/0022-1236(73)90049-9.

[7]

A. Majda, Disappearing solutions for the dissipative wave equation, Indiana Univ. Math. J., 24 (1975), 1119-1133.

[8]

A. Majda, The location of the spectrum for the dissipative acoustic operator, Indiana Univ. Math. J., 25 (1976), 973-987. doi: 10.1512/iumj.1976.25.25077.

[9]

A. Majda, High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering, Comm. Pure Appl. Math., 29 (1976), 261-291. doi: 10.1002/cpa.3160290303.

[10]

R. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées Equations aux Dérivées partielles, (1984), 1-8. doi: 10.5802/jedp.285.

[11]

R. Melrose and M. Taylor, Boundary Problems for Wave Equations with Glancing and Gliding Rays,, Available from , (). 

[12]

F. Olver, Asymptotics and Special Functions, Academic Press,New York, London, 1974.

[13]

V. Petkov, Scattering problems for symmetric systems with dissipative boundary conditions, in Studies in Phase Space Analysis and Applications to PDEs, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 84 (2013), 337-353. doi: 10.1007/978-1-4614-6348-1_15.

[14]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues,, Journal of Spectral Theory, (). 

[15]

G. Popov and G. Vodev, Resonances near the real axis for transparent obstacles, Commun. Math. Phys., 207 (1999), 411-438. doi: 10.1007/s002200050731.

[16]

J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann., 309 (1997), 287-306. doi: 10.1007/s002080050113.

[17]

J. Sjöstrand, Weyl law for semi-classical resonances with randomly perturbed potentials, Mémoire de SMF, 136 (2014), vi+144 pp.

[18]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon & Breach Science Publishers, New York, 1989.

[19]

G. Vodev, Transmission eigenvalue-free regions}, Commun. Math. Phys., 336 (2015), 1141-1166. doi: 10.1007/s00220-015-2311-2.

[20]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336. doi: 10.1007/s00208-015-1329-2.

show all references

References:
[1]

F. Cardoso, G. Popov and G. Vodev, Asymptotic of the number of resonances in the transmission problem, Comm. PDE, 26 (2001), 1811-1859. doi: 10.1081/PDE-100107460.

[2]

F. Colombini, V. Petkov and J. Rauch, Spectral problems for non elliptic symmetric systems with dissipative boundary conditions, J. Funct. Anal., 267 (2014), 1637-1661. doi: 10.1016/j.jfa.2014.06.018.

[3]

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in Semi-Classical Limits, London Mathematical Society, Lecture Notes Series, 268, Cambridge University Press, 1999. doi: 10.1017/CBO9780511662195.

[4]

V. Georgiev and Ja. Arnaoudov, Inverse scattering problem for dissipative wave equation, Mat. App. Comput., 9 (1990), 59-78.

[5]

P. Lax and R. Phillips, Scattering Theory, $2^{nd}$ edition, Academic Press, New York, 1989.

[6]

P. Lax and R. Phillips, Scattering theory for dissipative systems, J. Funct. Anal., 14 (1973), 172-235. doi: 10.1016/0022-1236(73)90049-9.

[7]

A. Majda, Disappearing solutions for the dissipative wave equation, Indiana Univ. Math. J., 24 (1975), 1119-1133.

[8]

A. Majda, The location of the spectrum for the dissipative acoustic operator, Indiana Univ. Math. J., 25 (1976), 973-987. doi: 10.1512/iumj.1976.25.25077.

[9]

A. Majda, High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering, Comm. Pure Appl. Math., 29 (1976), 261-291. doi: 10.1002/cpa.3160290303.

[10]

R. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle, Journées Equations aux Dérivées partielles, (1984), 1-8. doi: 10.5802/jedp.285.

[11]

R. Melrose and M. Taylor, Boundary Problems for Wave Equations with Glancing and Gliding Rays,, Available from , (). 

[12]

F. Olver, Asymptotics and Special Functions, Academic Press,New York, London, 1974.

[13]

V. Petkov, Scattering problems for symmetric systems with dissipative boundary conditions, in Studies in Phase Space Analysis and Applications to PDEs, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 84 (2013), 337-353. doi: 10.1007/978-1-4614-6348-1_15.

[14]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues,, Journal of Spectral Theory, (). 

[15]

G. Popov and G. Vodev, Resonances near the real axis for transparent obstacles, Commun. Math. Phys., 207 (1999), 411-438. doi: 10.1007/s002200050731.

[16]

J. Sjöstrand and G. Vodev, Asymptotics of the number of Rayleigh resonances, Math. Ann., 309 (1997), 287-306. doi: 10.1007/s002080050113.

[17]

J. Sjöstrand, Weyl law for semi-classical resonances with randomly perturbed potentials, Mémoire de SMF, 136 (2014), vi+144 pp.

[18]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, Gordon & Breach Science Publishers, New York, 1989.

[19]

G. Vodev, Transmission eigenvalue-free regions}, Commun. Math. Phys., 336 (2015), 1141-1166. doi: 10.1007/s00220-015-2311-2.

[20]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336. doi: 10.1007/s00208-015-1329-2.

[1]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems and Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[2]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[3]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[4]

Victor Isakov. On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data. Inverse Problems and Imaging, 2008, 2 (1) : 151-165. doi: 10.3934/ipi.2008.2.151

[5]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure and Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[6]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[7]

Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic and Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014

[8]

Bruno Fornet, O. Guès. Penalization approach to semi-linear symmetric hyperbolic problems with dissipative boundary conditions. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 827-845. doi: 10.3934/dcds.2009.23.827

[9]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[10]

Thierry Daudé, Damien Gobin, François Nicoleau. Local inverse scattering at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Problems and Imaging, 2016, 10 (3) : 659-688. doi: 10.3934/ipi.2016016

[11]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems and Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[12]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[13]

Gennaro Infante. Eigenvalues and positive solutions of odes involving integral boundary conditions. Conference Publications, 2005, 2005 (Special) : 436-442. doi: 10.3934/proc.2005.2005.436

[14]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[15]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[16]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[17]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[18]

Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024

[19]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[20]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (124)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]