November  2016, 10(4): 1149-1180. doi: 10.3934/ipi.2016036

A minimal surface criterion for graph partitioning

1. 

Montana State University, Department of Mathematical Sciences, 2-214 Wilson Hall, Box 172400, Bozeman, MT 59717-2400, United States

2. 

University of Utah, Salt Lake City, Department of Mathematics, 155 S. 1400 E, Rm 233, Salt Lake City, UT 84112, United States

Received  July 2015 Revised  May 2016 Published  October 2016

We consider a geometric approach to graph partitioning based on the graph Beltrami energy, a discrete version of a functional that appears in classical minimal surface problems. More specifically, the optimality criterion is given by the sum of the minimal Beltrami energies of the partition components. Since the Beltrami energy interpolates between the Total Variation and Dirichlet energies, various results for optimal partitions for these two energies can be recovered. We adapt primal-dual convex optimization methods to solve for the minimal Beltrami energy for each component of a given partition. A rearrangement algorithm is proposed to find the graph partition to minimize a relaxed version of the objective. The method is applied to several clustering problems on graphs constructed from manifold discretizations, synthetic data, the MNIST handwritten digit dataset, and image segmentation. The model has a semisupervised extension and provides a natural representative for the clusters as well.
Citation: Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems & Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036
References:
[1]

K. J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-Linear Programming,, Cambridge Univ. Press, (1958).   Google Scholar

[2]

I. Babuska, The finite element method with penalty,, Mathematics of Computation, 27 (1973), 221.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

D. A. Bader, H. Meyerhenke, P. Sanders and D. Wagner (eds.), Graph Partitioning and Graph Clustering,, American Mathematical Society, (2013).  doi: 10.1090/conm/588.  Google Scholar

[4]

D. Barash, Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 844.  doi: 10.1109/TPAMI.2002.1008390.  Google Scholar

[5]

B. Bogosel, Shape Optimization and Spectral Problems,, Ph.D. thesis, (2015).   Google Scholar

[6]

B. Bogosel, Partitions minimizing an anisotropic length,, 2016., ().   Google Scholar

[7]

V. Bonnaillie-Noël and B. Helffer, Numerical analysis of nodal sets for eigenvalues of Aharonov-Bohm Hamiltonians on the square with application to minimal partitions,, Experimental Mathematics, 20 (2011), 304.  doi: 10.1080/10586458.2011.565240.  Google Scholar

[8]

V. Bonnaillie-Noël, B. Helffer and G. Vial, Numerical simulations for nodal domains and spectral minimal partitions,, ESAIM: Control, 16 (2010), 221.  doi: 10.1051/cocv:2008074.  Google Scholar

[9]

V. Bonnaillie-Noël and C. Léna, Spectral minimal partitions for a family of tori,, URL , ().   Google Scholar

[10]

B. Bourdin, D. Bucur and É. Oudet, Optimal partitions for eigenvalues,, SIAM Journal on Scientific Computing, 31 (2010), 4100.  doi: 10.1137/090747087.  Google Scholar

[11]

T. Brox and D. Cremers, On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional,, International Journal of Computer Vision, 84 (2009), 184.  doi: 10.1007/s11263-008-0153-5.  Google Scholar

[12]

D. Bucur, G. Butazzo and A. Henrot, Existence results for some optimal partition problems,, Adv. Math. Sci. Appl., 8 (1998), 571.   Google Scholar

[13]

D. Bucur and G. Butazzo, Variational Methods in Shape Optimization Problems, vol. 65 of Progress in Nonlinear Differential Equations and Their Applications,, Birkhäuser Boston, (2005).   Google Scholar

[14]

D. Bucur and B. Velichkov, Multiphase shape optimization problems,, SIAM Journal on Control and Optimization, 52 (2014), 3556.  doi: 10.1137/130917272.  Google Scholar

[15]

L. A. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, Journal of Scientific Computing, 31 (2007), 5.  doi: 10.1007/s10915-006-9114-8.  Google Scholar

[16]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging,, Journal of Mathematical Imaging and Vision, 40 (2011), 120.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[17]

T. F. Chan and L. A. Vese, Active contours without edges,, IEEE Transactions on Image Processing, 10 (2001), 266.  doi: 10.1109/83.902291.  Google Scholar

[18]

H. Cohn and A. Kumar, Universally optimal distribution of points on spheres,, Journal of the American Mathematical Society, 20 (2007), 99.  doi: 10.1090/S0894-0347-06-00546-7.  Google Scholar

[19]

O. Cybulski, V. Babin and R. Holyst, Minimization of the Renyi entropy production in the space-partitioning process,, Physical Review E, 71 (2005).  doi: 10.1103/PhysRevE.71.046130.  Google Scholar

[20]

O. Cybulski and R. Holyst, Three-dimensional space partition based on the first Laplacian eigenvalues in cells,, Physical Review E, 77 (2008).  doi: 10.1103/PhysRevE.77.056101.  Google Scholar

[21]

L. Dascal, G. Rosman and R. Kimmel, Efficient Beltrami filtering of color images via vector extrapolation,, in SSVM'07: Proceedings of the 1st international conference on Scale space and variational methods in computer vision, 4485 (2007), 92.  doi: 10.1007/978-3-540-72823-8_9.  Google Scholar

[22]

A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm,, Journal of the Royal Statistical Society. Series B (Methodological), 39 (1977), 1.   Google Scholar

[23]

J. Duchi, S. Shalev-Shwartz, Y. Singer and T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions,, in Proceedings of the 25th international conference on Machine learning - ICML '08, (2008), 272.   Google Scholar

[24]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, North-Holland Publishing Company, (1976).   Google Scholar

[25]

S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions,, Communications on Pure and Applied Mathematics, 68 (2015), 808.  doi: 10.1002/cpa.21527.  Google Scholar

[26]

E. Esser, X. Zhang and T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science,, SIAM Journal on Imaging Sciences, 3 (2010), 1015.  doi: 10.1137/09076934X.  Google Scholar

[27]

M. Feigin and N. Sochen, Anisotropic regularization for inverse problems with application to the Wiener filter with Gaussian and impulse noise,, in Scale Space and Variational Methods in Computer Vision, (5567), 319.  doi: 10.1007/978-3-642-02256-2_27.  Google Scholar

[28]

R. Gabbrielli, A new counter-example to Kelvin's conjecture on minimal surfaces,, Philosophical Magazine Letters, 89 (2009), 483.  doi: 10.1080/09500830903022651.  Google Scholar

[29]

C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner and A. G. Percus, Multiclass data segmentation using diffuse interface methods on graphs,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (2014), 1600.  doi: 10.1109/TPAMI.2014.2300478.  Google Scholar

[30]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Springer Science & Business Media, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[31]

T. C. Hales, The honeycomb conjecture,, Discrete & Computational Geometry, 25 (2001), 1.  doi: 10.1007/s004540010071.  Google Scholar

[32]

B. Helffer, On spectral minimal partitions: A survey,, Milan J. Math., 78 (2010), 575.  doi: 10.1007/s00032-010-0129-0.  Google Scholar

[33]

B. Helffer and T. Hoffmann-Ostenhof, Remarks on two notions of spectral minimal partitions,, Adv. Math. Sci. Appl., 20 (2010), 249.   Google Scholar

[34]

B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, On spectral minimal partitions: The case of the sphere, 2010,, Around the research of Vladimir Maz'ya. III, 13 (2010), 153.  doi: 10.1007/978-1-4419-1345-6_6.  Google Scholar

[35]

C. Herring, Some theorems on the free energies of crystal surfaces,, Physical Review, 82 (1951), 87.  doi: 10.1103/PhysRev.82.87.  Google Scholar

[36]

R. Kaftory, N. A. Sochen and Y. Y. Zeevi, Variational blind deconvolution of multi-channel images,, Int. J. Imaging Syst. Technol., 15 (2005), 56.  doi: 10.1002/ima.20038.  Google Scholar

[37]

R. Kimmel, R. Malladi and N. Sochen, Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images,, Int. J. Comput. Vis., 39 (2000), 111.   Google Scholar

[38]

C. Li, C.-Y. Kao, J. C. Gore and Z. Ding, Minimization of region-scalable fitting energy for image segmentation,, IEEE Transactions on Image Processing, 17 (2008), 1940.  doi: 10.1109/TIP.2008.2002304.  Google Scholar

[39]

Z. Liang and Y. Li, Beltrami flow in Hilbert space with applications to image denoising,, Journal of Electronic Imaging, 21 (2012), 1.  doi: 10.1117/1.JEI.21.4.043019.  Google Scholar

[40]

S. Lloyd, Least squares quantization in PCM,, IEEE Transactions on Information Theory, 28 (1982), 129.  doi: 10.1109/TIT.1982.1056489.  Google Scholar

[41]

L. Lopez-Perez, R. Deriche and N. Sochen, The Beltrami flow over triangulated manifolds,, in CVAMIA and MMBIA Workshop at ECCV 2004, 3117 (2004), 135.  doi: 10.1007/978-3-540-27816-0_12.  Google Scholar

[42]

E. Merkurjev, T. Kostic and A. L. Bertozzi, An MBO scheme on graphs for segmentation and image processing,, SIAM J. Imaging Sciences, 6 (2013), 1903.  doi: 10.1137/120886935.  Google Scholar

[43]

B. Merriman, J. K. Bence and S. Osher, Diffusion Generated Motion by Mean Curvature,, Technical report, (1992), 92.   Google Scholar

[44]

B. Merriman, J. K. Bence and S. Osher, Diffusion generated motion by mean curvature,, AMS Selected Letters, (): 73.   Google Scholar

[45]

B. Osting and C. D. White, Nonnegative matrix factorization of transition matrices via eigenvalue optimization,, in NIPS OPT, (2013).   Google Scholar

[46]

B. Osting, C. D. White and É. Oudet, Minimal Dirichlet energy partitions for graphs,, SIAM Journal on Scientific Computing, 36 (2014).  doi: 10.1137/130934568.  Google Scholar

[47]

É. Oudet, Approximation of partitions of least perimeter by $\Gamma$-convergence: around Kelvin's conjecture,, Experimental Mathematics, 20 (2011), 260.  doi: 10.1080/10586458.2011.565233.  Google Scholar

[48]

J. Plateau, Statique Expérimentale et Théorique des Liquides Soumis Aux Seules Forces Moléculaires,, Gauthier-Villars, (1873).   Google Scholar

[49]

G. Pólya and G. Szegő, Isoperimetric inequalities in mathematical physics,, Princeton University Press, (1951).   Google Scholar

[50]

G. Rosman, X.-C. Tai, L. Dascal and R. Kimmel, Polyakov action for efficient color image processing,, Trends and Topics in Computer Vision, 6554 (2010), 50.  doi: 10.1007/978-3-642-35740-4_5.  Google Scholar

[51]

A. Roussos and P. Maragos, Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals,, in 2010 IEEE International Conference on Image Processing, (2010), 4141.  doi: 10.1109/ICIP.2010.5653241.  Google Scholar

[52]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[53]

C. Sagiv, N. A. Sochen and Y. Y. Zeevi, Gabor feature space diffusion via the minimal weighted area method,, in Energy Minimization Methods in Computer Vision and Pattern Recognition, 2134 (2001), 621.  doi: 10.1007/3-540-44745-8_41.  Google Scholar

[54]

H. Schaeffer and L. Vese, Variational dynamics of free triple junctions,, Journal of Scientific Computing, 59 (2014), 386.  doi: 10.1007/s10915-013-9767-z.  Google Scholar

[55]

H. A. Schwarz, Gesammelte mathematische Abhandlungen,, Springer Berlin Heidelberg, (1890).  doi: 10.1007/978-3-642-50665-9.  Google Scholar

[56]

W. Sir Thomson, On the division of space with minimum partitional area,, Acta Mathematica, 11 (1887), 121.  doi: 10.1007/BF02612322.  Google Scholar

[57]

N. Sochen, R. Deriche and L. Lopez-Perez, The Beltrami flow over implicit manifolds,, in 9th IEEE ICCV, (2003), 832.  doi: 10.1109/ICCV.2003.1238434.  Google Scholar

[58]

N. Sochen, R. Kimmel and R. Malladi, A general framework for low level vision,, IEEE Transactions on Image Processing, 7 (1998), 310.  doi: 10.1109/83.661181.  Google Scholar

[59]

N. A. Sochen, Stochastic processes in vision: From Langevin to Beltrami,, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, 1 (2001), 288.  doi: 10.1109/ICCV.2001.937531.  Google Scholar

[60]

A. Spira, R. Kimmel and N. Sochen, A short-time Beltrami kernel for smoothing images and manifolds,, IEEE Transactions on Image Processing, 16 (2007), 1628.  doi: 10.1109/TIP.2007.894253.  Google Scholar

[61]

M. van den Berg and D. Bucur, On the torsion function with Robin or Dirichlet boundary conditions,, Journal of Functional Analysis, 266 (2014), 1647.  doi: 10.1016/j.jfa.2013.07.007.  Google Scholar

[62]

Y. van Gennip, N. Guillen, B. Osting and A. L. Bertozzi, Mean curvature, threshold dynamics, and phase field theory on finite graphs,, Milan Journal of Mathematics, 82 (2014), 3.  doi: 10.1007/s00032-014-0216-8.  Google Scholar

[63]

A. Wetzler and R. Kimmel, Efficient Beltrami flow in patch-space,, in Scale Space and Variational Methods in Computer Vision 2011 (eds. A. M. Bruckstein, (2011), 134.  doi: 10.1007/978-3-642-24785-9_12.  Google Scholar

[64]

Z. Yang, T. Hao, O. Dikmen, X. Chen and E. Oja, Clustering by nonnegative matrix factorization using graph random walk,, in Advances in Neural Information Processing Systems 25, (2012), 1079.   Google Scholar

[65]

M. Zhu and T. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration,, Technical report, (2008), 08.   Google Scholar

[66]

M. Zhu, S. J. Wright and T. F. Chan, Duality-based algorithms for total-variation-regularized image restoration,, Computational Optimization and Applications, 47 (2010), 377.  doi: 10.1007/s10589-008-9225-2.  Google Scholar

[67]

D. Zosso, J. An, J. Stevick, N. Takaki, M. Weiss, L. S. Slaughter, H. H. Cao, P. S. Weiss and A. L. Bertozzi, Image segmentation with dynamic artifacts detection and bias correction,, submitted to: AIMS J. Inverse Problems and Imaging, ().   Google Scholar

[68]

D. Zosso and A. Bustin, A Primal-Dual Projected Gradient Algorithm for Efficient Beltrami Regularization,, Technical report, (2014), 14.   Google Scholar

show all references

References:
[1]

K. J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-Linear Programming,, Cambridge Univ. Press, (1958).   Google Scholar

[2]

I. Babuska, The finite element method with penalty,, Mathematics of Computation, 27 (1973), 221.  doi: 10.1090/S0025-5718-1973-0351118-5.  Google Scholar

[3]

D. A. Bader, H. Meyerhenke, P. Sanders and D. Wagner (eds.), Graph Partitioning and Graph Clustering,, American Mathematical Society, (2013).  doi: 10.1090/conm/588.  Google Scholar

[4]

D. Barash, Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 (2002), 844.  doi: 10.1109/TPAMI.2002.1008390.  Google Scholar

[5]

B. Bogosel, Shape Optimization and Spectral Problems,, Ph.D. thesis, (2015).   Google Scholar

[6]

B. Bogosel, Partitions minimizing an anisotropic length,, 2016., ().   Google Scholar

[7]

V. Bonnaillie-Noël and B. Helffer, Numerical analysis of nodal sets for eigenvalues of Aharonov-Bohm Hamiltonians on the square with application to minimal partitions,, Experimental Mathematics, 20 (2011), 304.  doi: 10.1080/10586458.2011.565240.  Google Scholar

[8]

V. Bonnaillie-Noël, B. Helffer and G. Vial, Numerical simulations for nodal domains and spectral minimal partitions,, ESAIM: Control, 16 (2010), 221.  doi: 10.1051/cocv:2008074.  Google Scholar

[9]

V. Bonnaillie-Noël and C. Léna, Spectral minimal partitions for a family of tori,, URL , ().   Google Scholar

[10]

B. Bourdin, D. Bucur and É. Oudet, Optimal partitions for eigenvalues,, SIAM Journal on Scientific Computing, 31 (2010), 4100.  doi: 10.1137/090747087.  Google Scholar

[11]

T. Brox and D. Cremers, On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional,, International Journal of Computer Vision, 84 (2009), 184.  doi: 10.1007/s11263-008-0153-5.  Google Scholar

[12]

D. Bucur, G. Butazzo and A. Henrot, Existence results for some optimal partition problems,, Adv. Math. Sci. Appl., 8 (1998), 571.   Google Scholar

[13]

D. Bucur and G. Butazzo, Variational Methods in Shape Optimization Problems, vol. 65 of Progress in Nonlinear Differential Equations and Their Applications,, Birkhäuser Boston, (2005).   Google Scholar

[14]

D. Bucur and B. Velichkov, Multiphase shape optimization problems,, SIAM Journal on Control and Optimization, 52 (2014), 3556.  doi: 10.1137/130917272.  Google Scholar

[15]

L. A. Cafferelli and F. H. Lin, An optimal partition problem for eigenvalues,, Journal of Scientific Computing, 31 (2007), 5.  doi: 10.1007/s10915-006-9114-8.  Google Scholar

[16]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging,, Journal of Mathematical Imaging and Vision, 40 (2011), 120.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[17]

T. F. Chan and L. A. Vese, Active contours without edges,, IEEE Transactions on Image Processing, 10 (2001), 266.  doi: 10.1109/83.902291.  Google Scholar

[18]

H. Cohn and A. Kumar, Universally optimal distribution of points on spheres,, Journal of the American Mathematical Society, 20 (2007), 99.  doi: 10.1090/S0894-0347-06-00546-7.  Google Scholar

[19]

O. Cybulski, V. Babin and R. Holyst, Minimization of the Renyi entropy production in the space-partitioning process,, Physical Review E, 71 (2005).  doi: 10.1103/PhysRevE.71.046130.  Google Scholar

[20]

O. Cybulski and R. Holyst, Three-dimensional space partition based on the first Laplacian eigenvalues in cells,, Physical Review E, 77 (2008).  doi: 10.1103/PhysRevE.77.056101.  Google Scholar

[21]

L. Dascal, G. Rosman and R. Kimmel, Efficient Beltrami filtering of color images via vector extrapolation,, in SSVM'07: Proceedings of the 1st international conference on Scale space and variational methods in computer vision, 4485 (2007), 92.  doi: 10.1007/978-3-540-72823-8_9.  Google Scholar

[22]

A. P. Dempster, N. M. Laird and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm,, Journal of the Royal Statistical Society. Series B (Methodological), 39 (1977), 1.   Google Scholar

[23]

J. Duchi, S. Shalev-Shwartz, Y. Singer and T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions,, in Proceedings of the 25th international conference on Machine learning - ICML '08, (2008), 272.   Google Scholar

[24]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,, North-Holland Publishing Company, (1976).   Google Scholar

[25]

S. Esedoglu and F. Otto, Threshold dynamics for networks with arbitrary surface tensions,, Communications on Pure and Applied Mathematics, 68 (2015), 808.  doi: 10.1002/cpa.21527.  Google Scholar

[26]

E. Esser, X. Zhang and T. F. Chan, A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science,, SIAM Journal on Imaging Sciences, 3 (2010), 1015.  doi: 10.1137/09076934X.  Google Scholar

[27]

M. Feigin and N. Sochen, Anisotropic regularization for inverse problems with application to the Wiener filter with Gaussian and impulse noise,, in Scale Space and Variational Methods in Computer Vision, (5567), 319.  doi: 10.1007/978-3-642-02256-2_27.  Google Scholar

[28]

R. Gabbrielli, A new counter-example to Kelvin's conjecture on minimal surfaces,, Philosophical Magazine Letters, 89 (2009), 483.  doi: 10.1080/09500830903022651.  Google Scholar

[29]

C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, A. Flenner and A. G. Percus, Multiclass data segmentation using diffuse interface methods on graphs,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (2014), 1600.  doi: 10.1109/TPAMI.2014.2300478.  Google Scholar

[30]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Springer Science & Business Media, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[31]

T. C. Hales, The honeycomb conjecture,, Discrete & Computational Geometry, 25 (2001), 1.  doi: 10.1007/s004540010071.  Google Scholar

[32]

B. Helffer, On spectral minimal partitions: A survey,, Milan J. Math., 78 (2010), 575.  doi: 10.1007/s00032-010-0129-0.  Google Scholar

[33]

B. Helffer and T. Hoffmann-Ostenhof, Remarks on two notions of spectral minimal partitions,, Adv. Math. Sci. Appl., 20 (2010), 249.   Google Scholar

[34]

B. Helffer, T. Hoffmann-Ostenhof and S. Terracini, On spectral minimal partitions: The case of the sphere, 2010,, Around the research of Vladimir Maz'ya. III, 13 (2010), 153.  doi: 10.1007/978-1-4419-1345-6_6.  Google Scholar

[35]

C. Herring, Some theorems on the free energies of crystal surfaces,, Physical Review, 82 (1951), 87.  doi: 10.1103/PhysRev.82.87.  Google Scholar

[36]

R. Kaftory, N. A. Sochen and Y. Y. Zeevi, Variational blind deconvolution of multi-channel images,, Int. J. Imaging Syst. Technol., 15 (2005), 56.  doi: 10.1002/ima.20038.  Google Scholar

[37]

R. Kimmel, R. Malladi and N. Sochen, Images as embedded maps and minimal surfaces: Movies, color, texture, and volumetric medical images,, Int. J. Comput. Vis., 39 (2000), 111.   Google Scholar

[38]

C. Li, C.-Y. Kao, J. C. Gore and Z. Ding, Minimization of region-scalable fitting energy for image segmentation,, IEEE Transactions on Image Processing, 17 (2008), 1940.  doi: 10.1109/TIP.2008.2002304.  Google Scholar

[39]

Z. Liang and Y. Li, Beltrami flow in Hilbert space with applications to image denoising,, Journal of Electronic Imaging, 21 (2012), 1.  doi: 10.1117/1.JEI.21.4.043019.  Google Scholar

[40]

S. Lloyd, Least squares quantization in PCM,, IEEE Transactions on Information Theory, 28 (1982), 129.  doi: 10.1109/TIT.1982.1056489.  Google Scholar

[41]

L. Lopez-Perez, R. Deriche and N. Sochen, The Beltrami flow over triangulated manifolds,, in CVAMIA and MMBIA Workshop at ECCV 2004, 3117 (2004), 135.  doi: 10.1007/978-3-540-27816-0_12.  Google Scholar

[42]

E. Merkurjev, T. Kostic and A. L. Bertozzi, An MBO scheme on graphs for segmentation and image processing,, SIAM J. Imaging Sciences, 6 (2013), 1903.  doi: 10.1137/120886935.  Google Scholar

[43]

B. Merriman, J. K. Bence and S. Osher, Diffusion Generated Motion by Mean Curvature,, Technical report, (1992), 92.   Google Scholar

[44]

B. Merriman, J. K. Bence and S. Osher, Diffusion generated motion by mean curvature,, AMS Selected Letters, (): 73.   Google Scholar

[45]

B. Osting and C. D. White, Nonnegative matrix factorization of transition matrices via eigenvalue optimization,, in NIPS OPT, (2013).   Google Scholar

[46]

B. Osting, C. D. White and É. Oudet, Minimal Dirichlet energy partitions for graphs,, SIAM Journal on Scientific Computing, 36 (2014).  doi: 10.1137/130934568.  Google Scholar

[47]

É. Oudet, Approximation of partitions of least perimeter by $\Gamma$-convergence: around Kelvin's conjecture,, Experimental Mathematics, 20 (2011), 260.  doi: 10.1080/10586458.2011.565233.  Google Scholar

[48]

J. Plateau, Statique Expérimentale et Théorique des Liquides Soumis Aux Seules Forces Moléculaires,, Gauthier-Villars, (1873).   Google Scholar

[49]

G. Pólya and G. Szegő, Isoperimetric inequalities in mathematical physics,, Princeton University Press, (1951).   Google Scholar

[50]

G. Rosman, X.-C. Tai, L. Dascal and R. Kimmel, Polyakov action for efficient color image processing,, Trends and Topics in Computer Vision, 6554 (2010), 50.  doi: 10.1007/978-3-642-35740-4_5.  Google Scholar

[51]

A. Roussos and P. Maragos, Tensor-based image diffusions derived from generalizations of the total variation and Beltrami functionals,, in 2010 IEEE International Conference on Image Processing, (2010), 4141.  doi: 10.1109/ICIP.2010.5653241.  Google Scholar

[52]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[53]

C. Sagiv, N. A. Sochen and Y. Y. Zeevi, Gabor feature space diffusion via the minimal weighted area method,, in Energy Minimization Methods in Computer Vision and Pattern Recognition, 2134 (2001), 621.  doi: 10.1007/3-540-44745-8_41.  Google Scholar

[54]

H. Schaeffer and L. Vese, Variational dynamics of free triple junctions,, Journal of Scientific Computing, 59 (2014), 386.  doi: 10.1007/s10915-013-9767-z.  Google Scholar

[55]

H. A. Schwarz, Gesammelte mathematische Abhandlungen,, Springer Berlin Heidelberg, (1890).  doi: 10.1007/978-3-642-50665-9.  Google Scholar

[56]

W. Sir Thomson, On the division of space with minimum partitional area,, Acta Mathematica, 11 (1887), 121.  doi: 10.1007/BF02612322.  Google Scholar

[57]

N. Sochen, R. Deriche and L. Lopez-Perez, The Beltrami flow over implicit manifolds,, in 9th IEEE ICCV, (2003), 832.  doi: 10.1109/ICCV.2003.1238434.  Google Scholar

[58]

N. Sochen, R. Kimmel and R. Malladi, A general framework for low level vision,, IEEE Transactions on Image Processing, 7 (1998), 310.  doi: 10.1109/83.661181.  Google Scholar

[59]

N. A. Sochen, Stochastic processes in vision: From Langevin to Beltrami,, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, 1 (2001), 288.  doi: 10.1109/ICCV.2001.937531.  Google Scholar

[60]

A. Spira, R. Kimmel and N. Sochen, A short-time Beltrami kernel for smoothing images and manifolds,, IEEE Transactions on Image Processing, 16 (2007), 1628.  doi: 10.1109/TIP.2007.894253.  Google Scholar

[61]

M. van den Berg and D. Bucur, On the torsion function with Robin or Dirichlet boundary conditions,, Journal of Functional Analysis, 266 (2014), 1647.  doi: 10.1016/j.jfa.2013.07.007.  Google Scholar

[62]

Y. van Gennip, N. Guillen, B. Osting and A. L. Bertozzi, Mean curvature, threshold dynamics, and phase field theory on finite graphs,, Milan Journal of Mathematics, 82 (2014), 3.  doi: 10.1007/s00032-014-0216-8.  Google Scholar

[63]

A. Wetzler and R. Kimmel, Efficient Beltrami flow in patch-space,, in Scale Space and Variational Methods in Computer Vision 2011 (eds. A. M. Bruckstein, (2011), 134.  doi: 10.1007/978-3-642-24785-9_12.  Google Scholar

[64]

Z. Yang, T. Hao, O. Dikmen, X. Chen and E. Oja, Clustering by nonnegative matrix factorization using graph random walk,, in Advances in Neural Information Processing Systems 25, (2012), 1079.   Google Scholar

[65]

M. Zhu and T. Chan, An Efficient Primal-Dual Hybrid Gradient Algorithm for Total Variation Image Restoration,, Technical report, (2008), 08.   Google Scholar

[66]

M. Zhu, S. J. Wright and T. F. Chan, Duality-based algorithms for total-variation-regularized image restoration,, Computational Optimization and Applications, 47 (2010), 377.  doi: 10.1007/s10589-008-9225-2.  Google Scholar

[67]

D. Zosso, J. An, J. Stevick, N. Takaki, M. Weiss, L. S. Slaughter, H. H. Cao, P. S. Weiss and A. L. Bertozzi, Image segmentation with dynamic artifacts detection and bias correction,, submitted to: AIMS J. Inverse Problems and Imaging, ().   Google Scholar

[68]

D. Zosso and A. Bustin, A Primal-Dual Projected Gradient Algorithm for Efficient Beltrami Regularization,, Technical report, (2014), 14.   Google Scholar

[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[5]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[6]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[8]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[9]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[11]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[12]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[16]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]