January  2017, 11(1): 99-123. doi: 10.3934/ipi.2017006

On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method

Laboratory of Mathematics, Institute of Engineering, Hiroshima University, Higashihiroshima 739-8527, Japan

Received  November 2015 Revised  August 2016 Published  January 2017

Fund Project: The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 25400155) and (B) (No. 26287020) of Japan Society for the Promotion of Science

An inverse obstacle scattering problem for the wave governed by the Maxwell system in the time domain, in particular, over a finite time interval is considered. It is assumed that the electric field $\boldsymbol{E}$ and magnetic field $\boldsymbol{ H}$ which are solutions of the Maxwell system are generated only by a current density at the initial time located not far a way from an unknown obstacle. The obstacle is embedded in a medium like air which has constant electric permittivity $ε$ and magnetic permeability $μ$. It is assumed that the fields on the surface of the obstacle satisfy the Leontovich boundary condition $\boldsymbol{ ν}×\boldsymbol{H}-λ\,\boldsymbol{ ν}×(\boldsymbol{ E}×\boldsymbol{ ν})=\boldsymbol{ 0}$ with admittance $λ$ an unknown positive function and $\boldsymbol{ ν}$ the unit outward normal. The observation data are given by the electric field observed at the same place as the support of the current density over a finite time interval. It is shown that an indicator function computed from the electric fields corresponding two current densities enables us to know: the distance of the center of the common spherical support of the current densities to the obstacle; whether the value of the admittance $λ$ is greater or less than the special value $\sqrt{ε/μ}$.

Citation: Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006
References:
[1]

N. G. Alexopoulos and G. A. Tadler, Accuracy of the Leontovich boundary condition for continuous and discontinuous surface impedances, J. Appl. Phys., 46 (2008), 3326-3332.  doi: 10.1063/1.322058.  Google Scholar

[2]

C. A. Balanis, Antenna Theory, Analysis and Design 3$^{rd}$ edition, Wiley-Interscience, Hoboken, New Jersey, 2005. Google Scholar

[3]

E. B. Bykovskii, A solution of the mixed problem for the Maxwell's equations in the case of an ideal conducting boundary, Vestnik Leningrad Univ., 12 (1957), 50-66.   Google Scholar

[4]

M. Cheney and R. Borden, Fundamentals of Radar Imaging CBMS-NSF, Regional Conference Series in Applied Mathematics, 79, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory 3rd edn, New York, Springer, 2013.  Google Scholar

[6]

R. Courantt and D. Hilbert, Methoden der Mathematischen Physik Vol. 2, Berlin, Springer, 1937. Google Scholar

[7]

R. Dautray and J. -L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[8]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[9]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data Inverse Problems 28 (2012), 045010, 29pp. doi: 10.1088/0266-5611/28/4/045010.  Google Scholar

[10]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain Inverse Problems 31 (2015), 085011, 21pp. doi: 10.1088/0266-5611/31/8/085011.  Google Scholar

[11]

M. Ikehata, The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain, Inverse Problems and Imaging, 10 (2016), 131-163.  doi: 10.3934/ipi.2016.10.131.  Google Scholar

[12]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, Chapter 6 in Inverse Problems and Computational Mechanics (eds. Marin, L. , Munteanu, L. , Chiroiu, V. ), 2,123-147, Editura Academiei, Bucharest, Romania, in press. Google Scholar

[13]

M. Ikehata, A remark on finding the coefficient of the dissipative boundary condition via the enclosure method in the time domain Math. Meth. Appl. Sci. 2016. doi: 10.1002/mma.4021.  Google Scholar

[14]

B. V. Kapitonov, On exponential decay as $t\longrightarrow∞$ of solutions of an exterior boundary value problem for the Maxwell system, Math. USSR Sbornik, 66 (1990), 475-498.  doi: 10.1070/SM1990v066n02ABEH001318.  Google Scholar

[15]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-harmononic Maxwell's Equations, Expansion-, Integral-, and Variational Methods Springer, 2015.  Google Scholar

[16]

S. G. Krein and I. M. Kulikov, The Maxwell-Leontovich operator, (Russian)Differentsial'nye Uravneniya, 5 (1969), 1275-1282; English transl. in Differential Equations, 5(1969), 937-943. Google Scholar

[17]

V. A. Solonnikov, Overdetermined elliptic boundary value problems, Zap. Nauchn. Sem. LOMI, 21(1971), 112-158; English transl. in J. Soviet Math., 1 (1973), 477-512.  Google Scholar

[18]

M. V. Urev, On the Maxwell system under impedance boundary conditions with memory, Siberian Math. J., 55 (2014), 548-563.  doi: 10.1134/S0037446614030161.  Google Scholar

[19]

K. Yosida, Functional Analysis Third Edtition, Springer, New York, 1971. Google Scholar

show all references

References:
[1]

N. G. Alexopoulos and G. A. Tadler, Accuracy of the Leontovich boundary condition for continuous and discontinuous surface impedances, J. Appl. Phys., 46 (2008), 3326-3332.  doi: 10.1063/1.322058.  Google Scholar

[2]

C. A. Balanis, Antenna Theory, Analysis and Design 3$^{rd}$ edition, Wiley-Interscience, Hoboken, New Jersey, 2005. Google Scholar

[3]

E. B. Bykovskii, A solution of the mixed problem for the Maxwell's equations in the case of an ideal conducting boundary, Vestnik Leningrad Univ., 12 (1957), 50-66.   Google Scholar

[4]

M. Cheney and R. Borden, Fundamentals of Radar Imaging CBMS-NSF, Regional Conference Series in Applied Mathematics, 79, SIAM, Philadelphia, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[5]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory 3rd edn, New York, Springer, 2013.  Google Scholar

[6]

R. Courantt and D. Hilbert, Methoden der Mathematischen Physik Vol. 2, Berlin, Springer, 1937. Google Scholar

[7]

R. Dautray and J. -L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Spectral Theory and Applications Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[8]

M. Ikehata, Enclosing a polygonal cavity in a two-dimensional bounded domain from Cauchy data, Inverse Problems, 15 (1999), 1231-1241.  doi: 10.1088/0266-5611/15/5/308.  Google Scholar

[9]

M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and back-scattering data Inverse Problems 28 (2012), 045010, 29pp. doi: 10.1088/0266-5611/28/4/045010.  Google Scholar

[10]

M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain Inverse Problems 31 (2015), 085011, 21pp. doi: 10.1088/0266-5611/31/8/085011.  Google Scholar

[11]

M. Ikehata, The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain, Inverse Problems and Imaging, 10 (2016), 131-163.  doi: 10.3934/ipi.2016.10.131.  Google Scholar

[12]

M. Ikehata, New development of the enclosure method for inverse obstacle scattering, Chapter 6 in Inverse Problems and Computational Mechanics (eds. Marin, L. , Munteanu, L. , Chiroiu, V. ), 2,123-147, Editura Academiei, Bucharest, Romania, in press. Google Scholar

[13]

M. Ikehata, A remark on finding the coefficient of the dissipative boundary condition via the enclosure method in the time domain Math. Meth. Appl. Sci. 2016. doi: 10.1002/mma.4021.  Google Scholar

[14]

B. V. Kapitonov, On exponential decay as $t\longrightarrow∞$ of solutions of an exterior boundary value problem for the Maxwell system, Math. USSR Sbornik, 66 (1990), 475-498.  doi: 10.1070/SM1990v066n02ABEH001318.  Google Scholar

[15]

A. Kirsch and F. Hettlich, The Mathematical Theory of Time-harmononic Maxwell's Equations, Expansion-, Integral-, and Variational Methods Springer, 2015.  Google Scholar

[16]

S. G. Krein and I. M. Kulikov, The Maxwell-Leontovich operator, (Russian)Differentsial'nye Uravneniya, 5 (1969), 1275-1282; English transl. in Differential Equations, 5(1969), 937-943. Google Scholar

[17]

V. A. Solonnikov, Overdetermined elliptic boundary value problems, Zap. Nauchn. Sem. LOMI, 21(1971), 112-158; English transl. in J. Soviet Math., 1 (1973), 477-512.  Google Scholar

[18]

M. V. Urev, On the Maxwell system under impedance boundary conditions with memory, Siberian Math. J., 55 (2014), 548-563.  doi: 10.1134/S0037446614030161.  Google Scholar

[19]

K. Yosida, Functional Analysis Third Edtition, Springer, New York, 1971. Google Scholar

[1]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[2]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[3]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[4]

Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems & Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049

[5]

Masaru Ikehata. On finding the surface admittance of an obstacle via the time domain enclosure method. Inverse Problems & Imaging, 2019, 13 (2) : 263-284. doi: 10.3934/ipi.2019014

[6]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[7]

T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335

[8]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[9]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[10]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[11]

Ting Zhou. Reconstructing electromagnetic obstacles by the enclosure method. Inverse Problems & Imaging, 2010, 4 (3) : 547-569. doi: 10.3934/ipi.2010.4.547

[12]

Masaru Ikehata, Mishio Kawashita, Wakako Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena. Inverse Problems & Imaging, 2019, 13 (5) : 959-981. doi: 10.3934/ipi.2019043

[13]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[14]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems & Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

[15]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[16]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[17]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[18]

Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems & Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351

[19]

Laurent Bourgeois, Jérémi Dardé. The "exterior approach" to solve the inverse obstacle problem for the Stokes system. Inverse Problems & Imaging, 2014, 8 (1) : 23-51. doi: 10.3934/ipi.2014.8.23

[20]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

2018 Impact Factor: 1.469

Article outline

[Back to Top]