• Previous Article
    Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media
  • IPI Home
  • This Issue
  • Next Article
    On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method
February  2017, 11(1): 125-149. doi: 10.3934/ipi.2017007

Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation

Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia

Received  November 2015 Revised  June 2016 Published  January 2017

Fund Project: The research is supported by the Estonian Research Council grant PUT568 and institutional research funding IUT33-24 of the Estonian Ministry of Education and Research.

An inverse problem to determine a space-dependent factor in a semilinear time-fractional diffusion equation is considered. Additional data are given in the form of an integral with the Borel measure over the time. Uniqueness of the solution of the inverse problem is studied. The method uses a positivity principle of the corresponding differential equation that is also proved in the paper.

Citation: Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007
References:
[1]

M. Al-Refai and Y. Luchko, Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl. Math. Comput., 257 (2015), 40-51.  doi: 10.1016/j.amc.2014.12.127.  Google Scholar

[2]

E. Beretta and C. Cavaterra, Identifying a space-dependent coefficient in a reaction-diffusion equation, Inverse Problems and Imaging, 5 (2011), 285-296.  doi: 10.3934/ipi.2011.5.285.  Google Scholar

[3]

H. BrunnerH. Han and D. Yin, The maximum principle for time-fractional diffusion equations and its application, Numer. Funct. Anal Optim., 36 (2015), 1307-1321.  doi: 10.1080/01630563.2015.1065887.  Google Scholar

[4]

J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems 25 (2009), 115002, 16pp.  Google Scholar

[5]

K. M. FuratiO. S. Iyiola and M. Kirane, An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249 (2014), 24-31.  doi: 10.1016/j.amc.2014.10.046.  Google Scholar

[6]

V. GafiychukB. Datsko and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225.  doi: 10.1016/j.cam.2007.08.011.  Google Scholar

[7]

R. Gorenflo and F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math., 229 (2009), 400-415.  doi: 10.1016/j.cam.2008.04.005.  Google Scholar

[8]

G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Math. Zeitschrift, 27 (1928), 565-606.  doi: 10.1007/BF01171116.  Google Scholar

[9]

V. Isakov, Inverse parabolic problems with final overdetermination, Commun. Pure Appl. Math., 44 (1991), 185-209.  doi: 10.1002/cpa.3160440203.  Google Scholar

[10] V. Isakov, Inverse Problems for Partial Differential Equations, 2 edition, Springer, New York, 2006.   Google Scholar
[11]

J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation, Electron. J. Diff. Eqns. 2016 (2016), 28pp.  Google Scholar

[12]

J. Janno and K. Kasemets, A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination, Inverse Problems and Imaging, 3 (2009), 17-41.  doi: 10.3934/ipi.2009.3.17.  Google Scholar

[13]

B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Problems 28 (2012), 075010, 19pp.  Google Scholar

[14]

M. KiraneA. S. Malik and M. A. Al-Gwaizb, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 36 (2013), 1056-1069.  doi: 10.1002/mma.2661.  Google Scholar

[15]

M. Krasnoschok and N. Vasylyeva, On a solvability of a nonlinear fractional reaction-diffusion system in the Hölder spaces, Nonlin. Stud., 20 (2013), 591-621.   Google Scholar

[16]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type AMS, Providence, Rhode Island, 1968. Google Scholar

[17]

Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.  doi: 10.1016/j.jmaa.2010.08.048.  Google Scholar

[18]

Y. Luchko, W. Rundell, M. Yamamoto and L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation, Inverse Problems 29 (2013), 065019, 16pp.  Google Scholar

[19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.   Google Scholar
[20]

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers Math. Appl., 59 (2010), 1586-1593.  doi: 10.1016/j.camwa.2009.08.039.  Google Scholar

[21] C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, New York, 1970.   Google Scholar
[22] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Berlin, 1993.   Google Scholar
[23]

S. Z. RidaA. M. A. El-Sayed and A. A. M. Arafa, On the solutions of time-fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3847-3854.  doi: 10.1016/j.cnsns.2010.02.007.  Google Scholar

[24]

K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Control Relat. Fields, 1 (2011), 509-518.  doi: 10.3934/mcrf.2011.1.509.  Google Scholar

[25]

K. SekiM. Wojcik and M. Tachiya, Fractional reaction-diffusion equation, J. Chem. Phys., 119 (2003), 2165-2170.  doi: 10.1063/1.1587126.  Google Scholar

[26]

H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., 259 (1980), 299-310.  doi: 10.1090/S0002-9947-1980-0561838-5.  Google Scholar

[27] V. E. Tarasov, Fractional Dynamics. Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2010.   Google Scholar
[28]

V. Turut and N. Güzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations, Intern. Scholar. Res. Notices 2012 (2012), Art. ID 737206, 28 pp.  Google Scholar

[29]

T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111.  doi: 10.1016/j.apnum.2013.12.002.  Google Scholar

[30]

R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions Ph. D thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. Available from: https://www.yumpu.com/en/document/view/4926858/quasilinear-parabolic-problems-with-nonlinear-boundary-conditions Google Scholar

[31]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.  Google Scholar

[32]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

[33]

G. M. Zaslavsky, Fractional kinetics and anomalous transport, Physics Reports, 371 (2002), 461-580.  doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[34]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems 27 (2011), 035010, 12pp.  Google Scholar

show all references

References:
[1]

M. Al-Refai and Y. Luchko, Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl. Math. Comput., 257 (2015), 40-51.  doi: 10.1016/j.amc.2014.12.127.  Google Scholar

[2]

E. Beretta and C. Cavaterra, Identifying a space-dependent coefficient in a reaction-diffusion equation, Inverse Problems and Imaging, 5 (2011), 285-296.  doi: 10.3934/ipi.2011.5.285.  Google Scholar

[3]

H. BrunnerH. Han and D. Yin, The maximum principle for time-fractional diffusion equations and its application, Numer. Funct. Anal Optim., 36 (2015), 1307-1321.  doi: 10.1080/01630563.2015.1065887.  Google Scholar

[4]

J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems 25 (2009), 115002, 16pp.  Google Scholar

[5]

K. M. FuratiO. S. Iyiola and M. Kirane, An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249 (2014), 24-31.  doi: 10.1016/j.amc.2014.10.046.  Google Scholar

[6]

V. GafiychukB. Datsko and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225.  doi: 10.1016/j.cam.2007.08.011.  Google Scholar

[7]

R. Gorenflo and F. Mainardi, Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math., 229 (2009), 400-415.  doi: 10.1016/j.cam.2008.04.005.  Google Scholar

[8]

G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, Math. Zeitschrift, 27 (1928), 565-606.  doi: 10.1007/BF01171116.  Google Scholar

[9]

V. Isakov, Inverse parabolic problems with final overdetermination, Commun. Pure Appl. Math., 44 (1991), 185-209.  doi: 10.1002/cpa.3160440203.  Google Scholar

[10] V. Isakov, Inverse Problems for Partial Differential Equations, 2 edition, Springer, New York, 2006.   Google Scholar
[11]

J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation, Electron. J. Diff. Eqns. 2016 (2016), 28pp.  Google Scholar

[12]

J. Janno and K. Kasemets, A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination, Inverse Problems and Imaging, 3 (2009), 17-41.  doi: 10.3934/ipi.2009.3.17.  Google Scholar

[13]

B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem, Inverse Problems 28 (2012), 075010, 19pp.  Google Scholar

[14]

M. KiraneA. S. Malik and M. A. Al-Gwaizb, An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 36 (2013), 1056-1069.  doi: 10.1002/mma.2661.  Google Scholar

[15]

M. Krasnoschok and N. Vasylyeva, On a solvability of a nonlinear fractional reaction-diffusion system in the Hölder spaces, Nonlin. Stud., 20 (2013), 591-621.   Google Scholar

[16]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type AMS, Providence, Rhode Island, 1968. Google Scholar

[17]

Y. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.  doi: 10.1016/j.jmaa.2010.08.048.  Google Scholar

[18]

Y. Luchko, W. Rundell, M. Yamamoto and L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation, Inverse Problems 29 (2013), 065019, 16pp.  Google Scholar

[19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.   Google Scholar
[20]

R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Computers Math. Appl., 59 (2010), 1586-1593.  doi: 10.1016/j.camwa.2009.08.039.  Google Scholar

[21] C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, New York, 1970.   Google Scholar
[22] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Berlin, 1993.   Google Scholar
[23]

S. Z. RidaA. M. A. El-Sayed and A. A. M. Arafa, On the solutions of time-fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3847-3854.  doi: 10.1016/j.cnsns.2010.02.007.  Google Scholar

[24]

K. Sakamoto and M. Yamamoto, Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Control Relat. Fields, 1 (2011), 509-518.  doi: 10.3934/mcrf.2011.1.509.  Google Scholar

[25]

K. SekiM. Wojcik and M. Tachiya, Fractional reaction-diffusion equation, J. Chem. Phys., 119 (2003), 2165-2170.  doi: 10.1063/1.1587126.  Google Scholar

[26]

H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., 259 (1980), 299-310.  doi: 10.1090/S0002-9947-1980-0561838-5.  Google Scholar

[27] V. E. Tarasov, Fractional Dynamics. Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2010.   Google Scholar
[28]

V. Turut and N. Güzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations, Intern. Scholar. Res. Notices 2012 (2012), Art. ID 737206, 28 pp.  Google Scholar

[29]

T. Wei and J. Wang, A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111.  doi: 10.1016/j.apnum.2013.12.002.  Google Scholar

[30]

R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions Ph. D thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. Available from: https://www.yumpu.com/en/document/view/4926858/quasilinear-parabolic-problems-with-nonlinear-boundary-conditions Google Scholar

[31]

R. Zacher, Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.  doi: 10.1007/s00028-004-0161-z.  Google Scholar

[32]

R. Zacher, Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.  doi: 10.1016/j.jmaa.2008.06.054.  Google Scholar

[33]

G. M. Zaslavsky, Fractional kinetics and anomalous transport, Physics Reports, 371 (2002), 461-580.  doi: 10.1016/S0370-1573(02)00331-9.  Google Scholar

[34]

Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation, Inverse Problems 27 (2011), 035010, 12pp.  Google Scholar

[1]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[2]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282

[3]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[6]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[7]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[10]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[11]

Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029

[12]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[13]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, 2021, 20 (2) : 783-799. doi: 10.3934/cpaa.2020290

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[18]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[19]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[20]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (73)
  • HTML views (162)
  • Cited by (9)

Other articles
by authors

[Back to Top]