-
Previous Article
Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media
- IPI Home
- This Issue
-
Next Article
On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method
Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation
Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia |
An inverse problem to determine a space-dependent factor in a semilinear time-fractional diffusion equation is considered. Additional data are given in the form of an integral with the Borel measure over the time. Uniqueness of the solution of the inverse problem is studied. The method uses a positivity principle of the corresponding differential equation that is also proved in the paper.
References:
[1] |
M. Al-Refai and Y. Luchko,
Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl. Math. Comput., 257 (2015), 40-51.
doi: 10.1016/j.amc.2014.12.127. |
[2] |
E. Beretta and C. Cavaterra,
Identifying a space-dependent coefficient in a reaction-diffusion equation, Inverse Problems and Imaging, 5 (2011), 285-296.
doi: 10.3934/ipi.2011.5.285. |
[3] |
H. Brunner, H. Han and D. Yin,
The maximum principle for time-fractional diffusion equations and its application, Numer. Funct. Anal Optim., 36 (2015), 1307-1321.
doi: 10.1080/01630563.2015.1065887. |
[4] |
J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation,
Inverse Problems 25 (2009), 115002, 16pp. |
[5] |
K. M. Furati, O. S. Iyiola and M. Kirane,
An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249 (2014), 24-31.
doi: 10.1016/j.amc.2014.10.046. |
[6] |
V. Gafiychuk, B. Datsko and V. Meleshko,
Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225.
doi: 10.1016/j.cam.2007.08.011. |
[7] |
R. Gorenflo and F. Mainardi,
Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math., 229 (2009), 400-415.
doi: 10.1016/j.cam.2008.04.005. |
[8] |
G. H. Hardy and J. E. Littlewood,
Some properties of fractional integrals, Math. Zeitschrift, 27 (1928), 565-606.
doi: 10.1007/BF01171116. |
[9] |
V. Isakov,
Inverse parabolic problems with final overdetermination, Commun. Pure Appl. Math., 44 (1991), 185-209.
doi: 10.1002/cpa.3160440203. |
[10] |
V. Isakov, Inverse Problems for Partial Differential Equations, 2 edition, Springer, New York, 2006.
![]() |
[11] |
J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation,
Electron. J. Diff. Eqns. 2016 (2016), 28pp. |
[12] |
J. Janno and K. Kasemets,
A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination, Inverse Problems and Imaging, 3 (2009), 17-41.
doi: 10.3934/ipi.2009.3.17. |
[13] |
B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem,
Inverse Problems 28 (2012), 075010, 19pp. |
[14] |
M. Kirane, A. S. Malik and M. A. Al-Gwaizb,
An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 36 (2013), 1056-1069.
doi: 10.1002/mma.2661. |
[15] |
M. Krasnoschok and N. Vasylyeva,
On a solvability of a nonlinear fractional reaction-diffusion system in the Hölder spaces, Nonlin. Stud., 20 (2013), 591-621.
|
[16] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type AMS, Providence, Rhode Island, 1968. Google Scholar |
[17] |
Y. Luchko,
Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.
doi: 10.1016/j.jmaa.2010.08.048. |
[18] |
Y. Luchko, W. Rundell, M. Yamamoto and L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation,
Inverse Problems 29 (2013), 065019, 16pp. |
[19] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
![]() |
[20] |
R. L. Magin,
Fractional calculus models of complex dynamics in biological tissues, Computers Math. Appl., 59 (2010), 1586-1593.
doi: 10.1016/j.camwa.2009.08.039. |
[21] |
C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, New York, 1970.
![]() |
[22] |
J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Berlin, 1993.
![]() |
[23] |
S. Z. Rida, A. M. A. El-Sayed and A. A. M. Arafa,
On the solutions of time-fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3847-3854.
doi: 10.1016/j.cnsns.2010.02.007. |
[24] |
K. Sakamoto and M. Yamamoto,
Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Control Relat. Fields, 1 (2011), 509-518.
doi: 10.3934/mcrf.2011.1.509. |
[25] |
K. Seki, M. Wojcik and M. Tachiya,
Fractional reaction-diffusion equation, J. Chem. Phys., 119 (2003), 2165-2170.
doi: 10.1063/1.1587126. |
[26] |
H. B. Stewart,
Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., 259 (1980), 299-310.
doi: 10.1090/S0002-9947-1980-0561838-5. |
[27] |
V. E. Tarasov, Fractional Dynamics. Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2010.
![]() |
[28] |
V. Turut and N. Güzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations,
Intern. Scholar. Res. Notices 2012 (2012), Art. ID 737206, 28 pp. |
[29] |
T. Wei and J. Wang,
A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111.
doi: 10.1016/j.apnum.2013.12.002. |
[30] |
R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions Ph. D thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. Available from: https://www.yumpu.com/en/document/view/4926858/quasilinear-parabolic-problems-with-nonlinear-boundary-conditions Google Scholar |
[31] |
R. Zacher,
Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.
doi: 10.1007/s00028-004-0161-z. |
[32] |
R. Zacher,
Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.
doi: 10.1016/j.jmaa.2008.06.054. |
[33] |
G. M. Zaslavsky,
Fractional kinetics and anomalous transport, Physics Reports, 371 (2002), 461-580.
doi: 10.1016/S0370-1573(02)00331-9. |
[34] |
Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation,
Inverse Problems 27 (2011), 035010, 12pp. |
show all references
References:
[1] |
M. Al-Refai and Y. Luchko,
Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, Appl. Math. Comput., 257 (2015), 40-51.
doi: 10.1016/j.amc.2014.12.127. |
[2] |
E. Beretta and C. Cavaterra,
Identifying a space-dependent coefficient in a reaction-diffusion equation, Inverse Problems and Imaging, 5 (2011), 285-296.
doi: 10.3934/ipi.2011.5.285. |
[3] |
H. Brunner, H. Han and D. Yin,
The maximum principle for time-fractional diffusion equations and its application, Numer. Funct. Anal Optim., 36 (2015), 1307-1321.
doi: 10.1080/01630563.2015.1065887. |
[4] |
J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation,
Inverse Problems 25 (2009), 115002, 16pp. |
[5] |
K. M. Furati, O. S. Iyiola and M. Kirane,
An inverse problem for a generalized fractional diffusion, Appl. Math. Comput., 249 (2014), 24-31.
doi: 10.1016/j.amc.2014.10.046. |
[6] |
V. Gafiychuk, B. Datsko and V. Meleshko,
Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215-225.
doi: 10.1016/j.cam.2007.08.011. |
[7] |
R. Gorenflo and F. Mainardi,
Some recent advances in theory and simulation of fractional diffusion processes, J. Comput. Appl. Math., 229 (2009), 400-415.
doi: 10.1016/j.cam.2008.04.005. |
[8] |
G. H. Hardy and J. E. Littlewood,
Some properties of fractional integrals, Math. Zeitschrift, 27 (1928), 565-606.
doi: 10.1007/BF01171116. |
[9] |
V. Isakov,
Inverse parabolic problems with final overdetermination, Commun. Pure Appl. Math., 44 (1991), 185-209.
doi: 10.1002/cpa.3160440203. |
[10] |
V. Isakov, Inverse Problems for Partial Differential Equations, 2 edition, Springer, New York, 2006.
![]() |
[11] |
J. Janno, Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation,
Electron. J. Diff. Eqns. 2016 (2016), 28pp. |
[12] |
J. Janno and K. Kasemets,
A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination, Inverse Problems and Imaging, 3 (2009), 17-41.
doi: 10.3934/ipi.2009.3.17. |
[13] |
B. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem,
Inverse Problems 28 (2012), 075010, 19pp. |
[14] |
M. Kirane, A. S. Malik and M. A. Al-Gwaizb,
An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci., 36 (2013), 1056-1069.
doi: 10.1002/mma.2661. |
[15] |
M. Krasnoschok and N. Vasylyeva,
On a solvability of a nonlinear fractional reaction-diffusion system in the Hölder spaces, Nonlin. Stud., 20 (2013), 591-621.
|
[16] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type AMS, Providence, Rhode Island, 1968. Google Scholar |
[17] |
Y. Luchko,
Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl., 374 (2011), 538-548.
doi: 10.1016/j.jmaa.2010.08.048. |
[18] |
Y. Luchko, W. Rundell, M. Yamamoto and L. Zuo, Uniqueness and reconstruction of an unknown semilinear term in a time-fractional reaction-diffusion equation,
Inverse Problems 29 (2013), 065019, 16pp. |
[19] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.
![]() |
[20] |
R. L. Magin,
Fractional calculus models of complex dynamics in biological tissues, Computers Math. Appl., 59 (2010), 1586-1593.
doi: 10.1016/j.camwa.2009.08.039. |
[21] |
C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, New York, 1970.
![]() |
[22] |
J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser Verlag, Berlin, 1993.
![]() |
[23] |
S. Z. Rida, A. M. A. El-Sayed and A. A. M. Arafa,
On the solutions of time-fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010), 3847-3854.
doi: 10.1016/j.cnsns.2010.02.007. |
[24] |
K. Sakamoto and M. Yamamoto,
Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Control Relat. Fields, 1 (2011), 509-518.
doi: 10.3934/mcrf.2011.1.509. |
[25] |
K. Seki, M. Wojcik and M. Tachiya,
Fractional reaction-diffusion equation, J. Chem. Phys., 119 (2003), 2165-2170.
doi: 10.1063/1.1587126. |
[26] |
H. B. Stewart,
Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc., 259 (1980), 299-310.
doi: 10.1090/S0002-9947-1980-0561838-5. |
[27] |
V. E. Tarasov, Fractional Dynamics. Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, New York, 2010.
![]() |
[28] |
V. Turut and N. Güzel, Comparing numerical methods for solving time-fractional reaction-diffusion equations,
Intern. Scholar. Res. Notices 2012 (2012), Art. ID 737206, 28 pp. |
[29] |
T. Wei and J. Wang,
A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation, Appl. Numer. Math., 78 (2014), 95-111.
doi: 10.1016/j.apnum.2013.12.002. |
[30] |
R. Zacher, Quasilinear Parabolic Problems with Nonlinear Boundary Conditions Ph. D thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. Available from: https://www.yumpu.com/en/document/view/4926858/quasilinear-parabolic-problems-with-nonlinear-boundary-conditions Google Scholar |
[31] |
R. Zacher,
Maximal regularity of type $L_p$ for abstract parabolic Volterra equations, J. Evol. Equ., 5 (2005), 79-103.
doi: 10.1007/s00028-004-0161-z. |
[32] |
R. Zacher,
Boundedness of weak solutions to evolutionary partial integro-differential equations with discontinuous coefficients, J. Math. Anal. Appl., 348 (2008), 137-149.
doi: 10.1016/j.jmaa.2008.06.054. |
[33] |
G. M. Zaslavsky,
Fractional kinetics and anomalous transport, Physics Reports, 371 (2002), 461-580.
doi: 10.1016/S0370-1573(02)00331-9. |
[34] |
Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation,
Inverse Problems 27 (2011), 035010, 12pp. |
[1] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[2] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 |
[3] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[4] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[5] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[6] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[7] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[8] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[9] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[10] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[11] |
Zaihui Gan, Fanghua Lin, Jiajun Tong. On the viscous Camassa-Holm equations with fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3427-3450. doi: 10.3934/dcds.2020029 |
[12] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[13] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[14] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[15] |
Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, 2021, 20 (2) : 783-799. doi: 10.3934/cpaa.2020290 |
[16] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[17] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[18] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[19] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[20] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]