• Previous Article
    Foveated compressive imaging for low power vehicle fingerprinting and tracking in aerial imagery
  • IPI Home
  • This Issue
  • Next Article
    Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation
February  2017, 11(1): 151-176. doi: 10.3934/ipi.2017008

Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media

Center for Industrial Mathematics, University of Bremen, 28359 Bremen, Germany

Received  December 2015 Revised  September 2016 Published  January 2017

Fund Project: The authors are supported by German Research Foundation (DFG) grant Le 2499/2-1.

We consider Tikhonov and sparsity-promoting regularization in Banach spaces for inverse scattering from penetrable anisotropic media. To this end, we equip an admissible set of material parameters with the $L^p$-topology and use Meyers' gradient estimate for solutions of elliptic equations to analyze the dependence of scattered fields and their Fréchet derivatives on the material parameter. This allows to show convergence of a non-linear Tikhonov regularization against a minimum-norm solution to the inverse problem, but also to set up sparsity-promoting versions of that regularization method. For both approaches, the discrepancy is defined via a $q$-Schatten norm or an $L^q$-norm with $1 < q < ∞$. Numerical reconstruction examples indicate the reconstruction quality of the method, as well as the qualitative dependence of the reconstructions on $q$.

Citation: Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008
References:
[1]

L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16 (1966), 1-3.  doi: 10.2140/pjm.1966.16.1.  Google Scholar

[2]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[3] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Springer, 2013.  doi: 10.1007/978-1-4614-4942-3.  Google Scholar
[4]

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41 (1988), 909-996.  doi: 10.1002/cpa.3160410705.  Google Scholar

[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.  doi: 10.1137/1.9781611970104.fm.  Google Scholar
[6]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[7]

B. Gramsch, Zum Einbettungssatz von Rellich bei Sobolevräumen, Math. Zeitschrift, 106 (1968), 81-87.  doi: 10.1007/BF01110715.  Google Scholar

[8]

A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires Mem. Amer. Math. Soc. 1955 (1955), 140pp. doi: 10.1090/memo/0016.  Google Scholar

[9]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, Journal of Computational and Applied Mathematics, 116 (2000), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.  Google Scholar

[10]

T. Hohage and C. Homann, A generalization of the Chambolle-Pock algorithm to Banach spaces with applications to inverse problems, preprint, arXiv: 1412.0126. Google Scholar

[11]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012), 1027-1048.  doi: 10.1051/cocv/2011193.  Google Scholar

[12]

A. Kirsch, An integral equation for the scattering problem for an anisotropic medium and the factorization method, in Advanced Topics in Scattering and Biomedical Engineering, 2008, 57-70. doi: 10.1142/9789812814852_0007.  Google Scholar

[13]

A. Lechleiter, K. S. Kazimierski and M. Karamehmedović, Tikhonov regularization in Lp applied to inverse medium scattering Inverse Problems 29 (2013), 075003, 19pp. doi: 10.1088/0266-5611/29/7/075003.  Google Scholar

[14]

A. Lechleiter and D.-L. Nguyen, A trigonometric galerkin method for volume integral equations arising in TM grating scattering, Adv. Compt. Math., 40 (2014), 1-25.  doi: 10.1007/s10444-013-9295-2.  Google Scholar

[15] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.  doi: 10.1017/S0013091501244435.  Google Scholar
[16]

N. G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Annali della Scuola Norm. Sup. Pisa, 17 (1963), 189-206.   Google Scholar

[17] J. -C. Nédélec, Acoustic and Electromagnetic Equations, Springer, New York etc, 2001.  doi: 10.1007/978-1-4757-4393-7.  Google Scholar
[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NY, 1997.   Google Scholar
[19]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging vol. 167 of Applied Mathematical Sciences, Springer, 2009. doi: 10.1007/978-0-387-69277-7.  Google Scholar

[20]

T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods in Banach Spaces vol. 10 of Radon Series on Computational and Applied Mathematics, De Gruyter, 2012.  Google Scholar

[21]

H. Triebel, Theory of Function Spaces Ⅲ Monographs in mathematics, Birkhäuser Verlag, Basel, Boston, Berlin, 2006. doi: 10.1007/3-7643-7582-5.  Google Scholar

[22]

G. Vainikko, Fast solvers of the Lippmann-Schwinger equation, in Direct and Inverse Problems of Mathematical Physics (eds. R. P. Gilbert, J. Kajiwara and Y. S. Xu), vol. 5 of International Society for Analysis, Applications and Computation, Springer US, 2000,423-440. doi: 10.1002/cpa.3160410705.  Google Scholar

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications. Ⅰ Fixed-Point Theorems, Springer, 1986.   Google Scholar

show all references

References:
[1]

L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16 (1966), 1-3.  doi: 10.2140/pjm.1966.16.1.  Google Scholar

[2]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[3] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Springer, 2013.  doi: 10.1007/978-1-4614-4942-3.  Google Scholar
[4]

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41 (1988), 909-996.  doi: 10.1002/cpa.3160410705.  Google Scholar

[5] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.  doi: 10.1137/1.9781611970104.fm.  Google Scholar
[6]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[7]

B. Gramsch, Zum Einbettungssatz von Rellich bei Sobolevräumen, Math. Zeitschrift, 106 (1968), 81-87.  doi: 10.1007/BF01110715.  Google Scholar

[8]

A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires Mem. Amer. Math. Soc. 1955 (1955), 140pp. doi: 10.1090/memo/0016.  Google Scholar

[9]

P. Hähner, On the uniqueness of the shape of a penetrable, anisotropic obstacle, Journal of Computational and Applied Mathematics, 116 (2000), 167-180.  doi: 10.1016/S0377-0427(99)00323-4.  Google Scholar

[10]

T. Hohage and C. Homann, A generalization of the Chambolle-Pock algorithm to Banach spaces with applications to inverse problems, preprint, arXiv: 1412.0126. Google Scholar

[11]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012), 1027-1048.  doi: 10.1051/cocv/2011193.  Google Scholar

[12]

A. Kirsch, An integral equation for the scattering problem for an anisotropic medium and the factorization method, in Advanced Topics in Scattering and Biomedical Engineering, 2008, 57-70. doi: 10.1142/9789812814852_0007.  Google Scholar

[13]

A. Lechleiter, K. S. Kazimierski and M. Karamehmedović, Tikhonov regularization in Lp applied to inverse medium scattering Inverse Problems 29 (2013), 075003, 19pp. doi: 10.1088/0266-5611/29/7/075003.  Google Scholar

[14]

A. Lechleiter and D.-L. Nguyen, A trigonometric galerkin method for volume integral equations arising in TM grating scattering, Adv. Compt. Math., 40 (2014), 1-25.  doi: 10.1007/s10444-013-9295-2.  Google Scholar

[15] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.  doi: 10.1017/S0013091501244435.  Google Scholar
[16]

N. G. Meyers, An Lp-estimate for the gradient of solutions of second order elliptic divergence equations, Annali della Scuola Norm. Sup. Pisa, 17 (1963), 189-206.   Google Scholar

[17] J. -C. Nédélec, Acoustic and Electromagnetic Equations, Springer, New York etc, 2001.  doi: 10.1007/978-1-4757-4393-7.  Google Scholar
[18] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NY, 1997.   Google Scholar
[19]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging vol. 167 of Applied Mathematical Sciences, Springer, 2009. doi: 10.1007/978-0-387-69277-7.  Google Scholar

[20]

T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods in Banach Spaces vol. 10 of Radon Series on Computational and Applied Mathematics, De Gruyter, 2012.  Google Scholar

[21]

H. Triebel, Theory of Function Spaces Ⅲ Monographs in mathematics, Birkhäuser Verlag, Basel, Boston, Berlin, 2006. doi: 10.1007/3-7643-7582-5.  Google Scholar

[22]

G. Vainikko, Fast solvers of the Lippmann-Schwinger equation, in Direct and Inverse Problems of Mathematical Physics (eds. R. P. Gilbert, J. Kajiwara and Y. S. Xu), vol. 5 of International Society for Analysis, Applications and Computation, Springer US, 2000,423-440. doi: 10.1002/cpa.3160410705.  Google Scholar

[23] E. Zeidler, Nonlinear Functional Analysis and its Applications. Ⅰ Fixed-Point Theorems, Springer, 1986.   Google Scholar
Figure 1.  Contrasts plotted in $[-0.4,0.4)^2$. (a) Real part of $q^{\mathrm{sc}\;(1)}$ (b) Imaginary part of $q^{\mathrm{sc}\;(1)}$ (c) Real-valued contrast $q^{\mathrm{sc}\;(2)}$
Figure 2.  Reconstructions of $q^{\mathrm{sc}\;(1)}$ by shrinked Landweber method, plotted in $[-0.4,0.4)^2$ (real parts in top row, imaginary parts in bottom row). (a/d) $\varepsilon=0.01$, 500 iter., 2145 min., rel. error=0.533 (b/e) $\varepsilon=0.05$, 300 iter., 748 min., rel. error=0.565 (c/f) $\varepsilon=0.1$, 57 iter., 126 min., rel. error=0.677.
Figure 3.  Reconstructions of $q^{\mathrm{sc}\;(2)}$ by shrinked Landweber method, plotted in $[-0.4,0.4)^2$ (real parts in top row, imaginary parts in bottom row). (a/d) $\varepsilon=0.01$, 200 iter., 390 min., rel. error=0.653 (b/e) $\varepsilon=0.05$, 48 iter., 87 min., rel. error=0.665 (c/f) $\varepsilon=0.1$, 20 iter., 38 min., rel. error=0.703.
Figure 4.  Reconstructions of $q^{\mathrm{sc}\;(2)}$ rotated by $25^\circ$ by shrinked Landweber method, plotted in $[-0.4,0.4)^2$ (real parts in top row, imaginary parts in bottom row). (a/d) $\varepsilon=0.01$, 300 iter., rel. error=0.668 (b/e) $\varepsilon=0.05$, 445 iter., rel. error=0.669 (c/f) $\varepsilon=0.1$, 99 iter., rel. error=0.734.
Figure 5.  Real part of reconstructions of $q^{\mathrm{sc}\;(2)}$ by primal-dual algorithm for different discrepancy norms $\| \cdot \|_q^q/q$ (see Remark 7) and fixed artificial noise level $\varepsilon=0.01$, plotted on $[-0.4,0.4)^2$. (a) $q=2$, 5 iter., 12 min., rel. error=0.658 (b) $q=3$, 2 iter., 4 min., rel. error=0.738 (c) $q=1.6$, 41 iter., 82 min., rel. error=0.763.
[1]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[4]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[8]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[9]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[12]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[13]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (58)
  • HTML views (119)
  • Cited by (4)

Other articles
by authors

[Back to Top]