
M. Aharon
, M. Elad
and A. Bruckstein
, KSVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 54 (2006)
, 43114322.


A. Ayvaci, M. Raptis and S. Soatto,
Occlusion Detection and Motion Estimation with Convex Optimization Neural Information Processing Systems, 2010.


A. Bruckstein
, D. Donoho
and M. Elad
, From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Review, 51 (2009)
, 3481.
doi: 10.1137/060657704.


E. Candés
and T. Tao
, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005)
, 42034215.
doi: 10.1109/TIT.2005.858979.


I. Ciocoiu
, Foveated compressed sensing, Proc. of Europe. Conf. on Circuit Theory and Design, (2011)
, 2932.
doi: 10.1109/ECCTD.2011.6043336.


Columbus surrogate unmanned aerial vehicle (CSUAV) dataset, United States Air Force Research Lab (AFRL).


J. P. Curzan
, C. R. Baxter
and M. A. Massie
, Variable acuity imager with dynamically steerable, programmable superpixels, Infrared Technology and Applications, Proc. SPIE, 4820 (2003)
, p318.
doi: 10.1117/12.451183.


D. Donoho
, A. Maleki
and A. Montanari
, Noise sensitivity phase transition in compressed sensing, IEEE Transactions on Information Theory, 57 (2011)
, 69206941.
doi: 10.1109/TIT.2011.2165823.


J. DuarteCarvajalino
and G. Sapiro
, Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization, IEEE Transactions on Image Processing, 18 (2009)
, 13951408.
doi: 10.1109/TIP.2009.2022459.


G. Georgiadis, A. Ayvaci and S. Soatto,
Actionable Saliency Detection Proc. of CVPR, 2012.


Z. Harmany
, A. Oh
, R. Marcia
and R. Willet
, Motionadaptive compressive coded apertures, Proc. of SPIE, 8165 (2011)
, 15.
doi: 10.1117/12.892726.


D. Heeger
and A. Jepson
, Subspace methods for recovering rigid motion, Intl. J. of Comp. Vis., 7 (1992)
, 95117.


InView Shortwave Infrared (SWIR) Cameras, http://inviewcorp.com/products/shortwaveinfraredswircameras/.


R. Jenatton, J. Mairal, G. Obozinski and F. Bach,
Proximal Methods for Sparse Hierarchical Dictionary Learning J. Machine Learning Research, 2011.


R. Larcom
and T. Coffman
, Foveated image formation through compressive sensing, Proc. of Southwest Symp. Image Anal. Interp., (2010)
, 145148.
doi: 10.1109/SSIAI.2010.5483896.


T. Mundhenk
, K. Ni
, K. Kim
and Y. Owechko
, Detection of unknown targets from aerial camera and extraction of simple object fingerprints for the purpose of target reacquisition, Proc. of SPIE, 8301 (2012)
, 114.
doi: 10.1117/12.906491.


S. Soatto,
Steps Towards a Theory of Visual Information Textbook Draft.


A. Soni
and J. Haupt
, Efficient adaptive compressive sensing using sparse hierarchical learned dictionaries, Proc. of ASILOMAR, (2011)
, 12501254.
doi: 10.1109/ACSSC.2011.6190216.


P. D. Sturkie,
Sturkie's Avian Physiology 5th Edition, Academic Press, San Diego.


N. Sundaram, T. Brox and K. Keutzer, Dense point trajectories by GPUaccelerated large
displacement optical flow, Chapter: Computer Vision C ECCV 2010, Volume 6311 of the
series Lecture Notes in Computer Science, (2010), 438451.
doi: 10.1007/9783642155499_32.


F. Tanner, B. Colder, C. Pullen, D. Heagy, M. Eppolito, V. Carlan, C. Oertel and P. Sallee,
Overhead Imagery Research Data Set: An Annotated Data Library and Tools to aid in the Development of Computer Vision Algorithms Proc. of IEEE Applied Imagery Pattern Rec. Workshop, 2009.
doi: 10.1109/AIPR.2009.5466304.


L. ZelnikManor
, K. Rosenblum
and Y. Eldar
, Sensing matrix optimization for blocksparse decoding, IEEE Transactions on Signal Processing, 59 (2011)
, 43004312.
doi: 10.1109/TSP.2011.2159211.
