[1]
|
J. H. Ahlberg and E. N. Nilson, Convergence properties of the spline fit, J. Soc. Indust. Appl. Math., 11 (1963), 95-104.
doi: 10.1137/0111007.
|
[2]
|
A. B. Bakushinskii and A. V. Goncharskii, Ill-Posed Problems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994.
doi: 10.1007/978-94-011-1026-6.
|
[3]
|
R. Blakely, Potential Theory in Gravity and Magnetic Applications, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511549816.
|
[4]
|
M. Burger and S. Osher, Convergence rates of convex variational regularization, Inverse Probl., 20 (2004), 1411-1421.
doi: 10.1088/0266-5611/20/5/005.
|
[5]
|
M. P. do Carmo,
Riemannian Geometry, Birkhäuser, 1992.
doi: 10.1007/978-1-4757-2201-7.
|
[6]
|
B. A. Dubrovin, A. T. Fomenko and S. P. Novikov,
Modern Geometry -Methods and Applications: Part Ⅰ: The Geometry of Surfaces, Transformation Groups, and Fields, Graduate Texts in Mathematics. Spinger, 2 edition, 1991. Tanslated by Burns, R. G.
doi: 10.1007/978-1-4684-9946-9.
|
[7]
|
H. W. Engl, M. Hanke and A. Neubauer,
Regularization of Inverse Problems, volume 375 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1996.
doi: 10.1007/978-94-009-1740-8.
|
[8]
|
C. Gerhards, On the unique reconstruction of induced spherical magnetizations, Inverse Probl., 32 (2016), 1-24.
doi: 10.1088/0266-5611/32/1/015002.
|
[9]
|
G. H. Golub and Ch. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1996.
|
[10]
|
C. W. Groetsch,
The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind, Pitman, Boston, 1984.
|
[11]
|
D. Gubbins, D. Ivers, S. M. Masterton and D. E. Winch, Analysis of lithospheric magnetization in vector spherical harmonics, Geophys. J. Int., 187 (2011), 99-117.
doi: 10.1111/j.1365-246X.2011.05153.x.
|
[12]
|
P. C. Hansen,
Discrete Inverse Problems, volume 7 of Fundamentals of Algorithms, SIAM, Philadelphia, PA, 2010.
doi: 10.1137/1.9780898718836.
|
[13]
|
E. Hebey,
Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, volume 5 of CIMS Lecture Notes, New York University, 1999.
|
[14]
|
B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Probl., 23 (2007), 987-1010.
doi: 10.1088/0266-5611/23/3/009.
|
[15]
|
J. Kaipio and E. Somersalo,
Statistical and Computational Inverse Problems, volume 160 of Applied Mathematical Sciences, Springer Verlag, New York, 2005.
doi: 10.1007/b138659.
|
[16]
|
C. Kirisits, L. F. Lang and O. Scherzer, Optical flow on evolving surfaces with an application to the analysis of 4D microscopy data, In A. Kuijper, K. Bredies, T. Pock, and H. Bischof, editors, SSVM'13: Proceedings of the 4th International Conference on Scale Space and Variational Methods in Computer Vision, volume 7893 of Lecture Notes in Computer Science, pages 246-257, Berlin, Heidelberg, 2013. Springer-Verlag.
doi: 10.1007/978-3-642-38267-3_21.
|
[17]
|
C. Kirisits, L.F. Lang and O. Scherzer, Optical flow on evolving surfaces with space and time regularisation, J. Math. Imaging Vision, 52 (2015), 55-70.
doi: 10.1007/s10851-014-0513-4.
|
[18]
|
C. Kirisits, C. Pöschl, E. Resmerita and O. Scherzer, Finite-dimensional approximation of convex regularization via hexagonal pixel grids, Appl. Anal., 94 (2015), 612-636.
doi: 10.1080/00036811.2014.958998.
|
[19]
|
J. M. Lee,
Riemannian Surfaces, volume 176 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1997.
doi: 10.1007/b98852.
|
[20]
|
J. Lefévre and S. Baillet, Optical flow and advection on 2-Riemannian surfaces: A common framework, IEEE Trans. Pattern Anal. Mach. Intell., 30 (2008), 1081-1092.
doi: 10.1109/TPAMI.2008.51.
|
[21]
|
V. A. Morozov,
Methods for Solving Incorrectly Posed Problems, Springer, New York, Berlin, Heidelberg, 1984.
doi: 10.1007/978-1-4612-5280-1.
|
[22]
|
J. L. Mueller and S. Siltanen,
Linear and Nonlinear Inverse Problems with Practical Applications, volume 10 of Computational Science & Engineering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.
doi: 10.1137/1.9781611972344.
|
[23]
|
A. Neubauer and O. Scherzer, Finite-dimensional approximation of Tikhonov regularized solutions of nonlinear ill-posed problems, Numer. Funct. Anal. Optim., 11 (1990), 85-99.
doi: 10.1080/01630569008816362.
|
[24]
|
C. Pöschl, E. Resmerita and O. Scherzer, Discretization of variational regularization in Banach spaces, Inverse Probl, 26 (2010), 105017, 18pp.
doi: 10.1088/0266-5611/26/10/105017.
|
[25]
|
E. Resmerita and O. Scherzer, Error estimates for non-quadratic regularization and the relation to enhancement, Inverse Probl., 22 (2006), 801-814.
doi: 10.1088/0266-5611/22/3/004.
|
[26]
|
O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen,
Variational Methods in Imaging, volume 167 of Applied Mathematical Sciences, Springer, New York, 2009.
doi: 10.1007/978-0-387-69277-7.
|
[27]
|
T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski,
Regularization Methods in Banach Spaces, volume 10 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2012.
doi: 10.1515/9783110255720.
|
[28]
|
V. P. Tanana,
Methods for Solution of Nonlinear Operator Equations, Inverse and Ill-posed Problems Series. VSP, Utrecht, 1997.
doi: 10.1515/9783110900156.
|
[29]
|
A. N. Tikhonov and V. Y. Arsenin,
Solutions of Ill-Posed Problems, John Wiley & Sons, Washington, D. C., 1977.
|
[30]
|
A. N. Tikhonov, A. Goncharsky, V. Stepanov and A. Yagola,
Numerical Methods for the Solution of Ill-Posed Problems, Kluwer, Dordrecht, 1995.
doi: 10.1007/978-94-015-8480-7.
|
[31]
|
A. N. Tikhonov, A. S. Leonov and A. G. Yagola,
Nonlinear Ill-Posed Problems, volume 14 of Applied Mathematics and Mathematical Computation, Chapman & Hall, London, 1998. Translated from the Russian.
doi: 10.1007/978-94-017-5167-4.
|