[1]
|
S. Acosta and C. Montalto, Multiwave imaging in an enclosure with variable wave speed, Inverse Problems, 31 (2015), 065009, 12pp.
doi: 10.1088/0266-5611/31/6/065009.
|
[2]
|
G. Alessandrini, Stable determination of conductivity by boundary measurements, App. Anal., 27 (1988), 153-172.
doi: 10.1080/00036818808839730.
|
[3]
|
H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM Journal on Applied Mathematics, 68 (2008), 1557-1573.
doi: 10.1137/070686408.
|
[4]
|
H. Ammari, E. Bossy, V. Jugnon and H. Kang, Mathematical models in photo-acoustic imaging of small absorbers,
SIAM Review.
|
[5]
|
G. Bal, Hybrid inverse problems and internal functionals, Inside Out II, MSRI Publications, 60 (2013), 325-368.
|
[6]
|
G. Bal, Cauchy problem and ultrasound modulated EIT, Analysis and PDE, 6 (2013), 751-775.
doi: 10.2140/apde.2013.6.751.
|
[7]
|
G. Bal, Hybrid inverse problems and systems of partial differential equations, Contemp. Math., 615 (2014), 15pp.
doi: 10.1090/conm/615/12289.
|
[8]
|
G. Bal, C. Bellis, S. Imperiale and F. Monard, Reconstruction of moduli in isotropic linear elasticity from full-field measurements, Inverse Problems, 30 (2014), 125004, 22pp.
doi: 10.1088/0266-5611/30/12/125004.
|
[9]
|
G. Bal, E. Bonnetier, F. Monard and F. Triki, Inverse diffusion from knowledge of power densities, Inverse Problems and Imaging, 7 (2013), 353-375.
doi: 10.3934/ipi.2013.7.353.
|
[10]
|
G. Bal and C. Guo, Imaging of complex-valued tensors for two-dimensional Maxwell's equations,
accepted by Journal of Inverse and Ill-posed Problems.
|
[11]
|
G. Bal and C. Guo, Reconstruction of complex-valued tensors in the {M}axwell system from knowledge of internal magnetic fields, Inverse Problems and Imaging, 8 (2014), 1033-1051.
doi: 10.3934/ipi.2014.8.1033.
|
[12]
|
G. Bal, C. Guo and F. Monard, Imaging of anisotropic conductivities from current densities in two dimensions, SIAM J. Imaging Sci., 7 (2014), 2538-2557.
doi: 10.1137/140961754.
|
[13]
|
G. Bal, C. Guo and F. Monard, Inverse anisotropic conductivity from internal current densities, Inverse Problems, 30 (2014), 025001, 21pp.
doi: 10.1088/0266-5611/30/2/025001.
|
[14]
|
G. Bal, C. Guo and F. Monard, Linearized internal functional for anisotropic conductivities, Inverse Problems and Imaging, 8 (2014), 1-22.
doi: 10.3934/ipi.2014.8.1.
|
[15]
|
G. Bal and F. Monard, Inverse diffusion problems with redundant internal information, Inverse Problems and Imaging, 6 (2012), 289-313.
doi: 10.3934/ipi.2012.6.289.
|
[16]
|
G. Bal, F. Monard and G. Uhlmann, Reconstruction of a fully anisotropic elasticity tensor from knowledge of displacement fields, SIAM J. Applied Math., 75 (2015), 2214-2231.
doi: 10.1137/151005269.
|
[17]
|
G. Bal and K. Ren, Multi-source quantitative pat in diffusive regime,
Inverse Problems, 27 075003.
|
[18]
|
G. Bal and K. Ren, On multi-spectral quantitative photoacoustic tomography,
Inverse Problems, 28 025010.
|
[19]
|
G. Bal, K. Ren, G. Uhlmann and T. Zhou, Quantitative thermo-acoustics and related problems, Inverse Problems, 27 (2011), 055007, 15pp.
doi: 10.1088/0266-5611/27/5/055007.
|
[20]
|
G. Bal and G. Uhlmann, Inverse diffusion theory for photoacoustics Inverse Problems, 26 (2010), 085010.
doi: 10.1088/0266-5611/26/8/085010.
|
[21]
|
G. Bal and G. Uhlmann, Reconstruction of coefficients in scalar second-order elliptic equations from knowledge of their solutions, Comm. on Pure and Applied Math, 66 (2013), 1629-1652.
doi: 10.1002/cpa.21453.
|
[22]
|
G. Bal and T. Zhou, Hybrid inverse problems for a system of Maxwell's equations, Inverse Problems, 30 (2014), 055013, 17pp.
doi: 10.1088/0266-5611/30/5/055013.
|
[23]
|
G. Bal and F. Monard, Inverse anisotropic diffusion from power density measurements in two dimensions, Inverse Problems, 28 (2012), 084001, 20pp.
doi: 10.1088/0266-5611/28/8/084001.
|
[24]
|
G. Bal and F. Monard, Inverse anisotropic conductivity from power density measurements in dimensions $ n≥q3$, Comm. Partial Differential Equations, 38 (2013), 1183-1207.
doi: 10.1080/03605302.2013.787089.
|
[25]
|
M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid, i. low-frequency range, Journal of the Acoustical Society of America, 28 (1956), 168-178.
doi: 10.1121/1.1908239.
|
[26]
|
M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. ii. high-frequency range, Journal of the Acoustical Society of America, 28 (1956), 179-191.
doi: 10.1121/1.1908241.
|
[27]
|
A.L. Bukhgeim and G. Uhlmann, Recovering a potential from partial cauchy data, Comm. in PDE, 27 (2002), 653-668.
doi: 10.1081/PDE-120002868.
|
[28]
|
K.E. Butler, R.D. Russell, A.W. Kepic and M. Maxwell, Measurement of the seismoelectric response from a shallow boundary, Geophysics, 61 (1996), 1769-1778.
doi: 10.1190/1.1444093.
|
[29]
|
A.P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Río de Janeiro), Soc. Brasil. Mat., Río de Janeiro, (1980), 65-73.
|
[30]
|
Y. Capdeboscq, J. Fehrenbach, F. de Gournay and O. Kavian, Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements, SIAM J. Imaging Sci., 2 (2009), 1003-1030.
doi: 10.1137/080723521.
|
[31]
|
P. Caro, P. Ola and M. Salo, Inverse boundary value problem for {M}axwell equations with local data, Comm. in PDE, 34 (2009), 1425-1464.
doi: 10.1080/03605300903296272.
|
[32]
|
P. Caro and K.M. Rogers, Global uniqueness for the calderón problem with lipschitz conductivities, Forum of Mathematics, 4 (2016), e2, 28pp.
doi: 10.1017/fmp.2015.9.
|
[33]
|
J. Chen and M. de Hoop, The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter, Inverse Problems and Imaging, 10 (2016), 641-658.
doi: 10.3934/ipi.2016015.
|
[34]
|
J. Chen and Y. Yang, Quantitative photo-acoustic tomography with partial data, Inverse Problems, 28 (2012), 115014, 15pp.
doi: 10.1088/0266-5611/28/11/115014.
|
[35]
|
J. Chen and Y. Yang, Inverse problem of electro-seismic conversion, Inverse Problems, 29 (2013), 115006, 15pp.
doi: 10.1088/0266-5611/29/11/115006.
|
[36]
|
P. G. Ciarlet, Mathematical elasticity,
Studies in Math. and its Appl.
|
[37]
|
D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves, Arch. Rational Mech. Anal., 119 (1992), 59-70.
doi: 10.1007/BF00376010.
|
[38]
|
B.T. Cox, S.R. Arridge and P.C. Beard, Estimating chromophore distributions from multiwavelength photoacoustic images, J. Opt. Soc. Am. A, 26 (2009), 443-455.
doi: 10.1364/JOSAA.26.000443.
|
[39]
|
B.T. Cox, J.G. Laufer and P.C. Beard, The challenges for quantitative photoacoustic imaging, Proc. of SPIE, 777 (2009), 717713.
doi: 10.1117/12.806788.
|
[40]
|
A. Douglis and L. Nirenberg, Interior estimates for elliptic systems of partial differential equations, Comm. Pure. Appl. Math., 8 (1955), 503-508.
doi: 10.1002/cpa.3160080406.
|
[41]
|
G. Eskin and J. Ralston, On the inverse boundary value problem for linear isotropic elasticity, Inverse Problems, 18 (2002), 907-921.
doi: 10.1088/0266-5611/18/3/324.
|
[42]
|
D.D.S. Ferreira, C. Kenig, M. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.
doi: 10.1007/s00222-009-0196-4.
|
[43]
|
S. K. Finch, D. Patch and D. Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 1213-1240.
doi: 10.1137/S0036141002417814.
|
[44]
|
A. R. Fisher, A. J. Schissler and J. C. Schotland, Photoacoustic effect for multiply scattered light, Phys. Rev. E., 76 (2007), 036604-1652.
doi: 10.1103/PhysRevE.76.036604.
|
[45]
|
B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM Journal of Applied Mathematics, 69 (2008), 565-576.
doi: 10.1137/080715123.
|
[46]
|
B. Haberman, Unique determination of a magnetic Schrödinger operator with unbounded magnetic potential from boundary data, preprint.
doi: 10.1093/imrn/rnw263.
|
[47]
|
B. Haberman and D. Tataru, Uniqueness in Calderon's problem with lipschitz conductivities, Duke Math. J., 162 (2013), 497-516.
doi: 10.1215/00127094-2019591.
|
[48]
|
M. Haltmeier, O. Scherzer, P. Burgholzer and G. Paltauf, Thermoacoustic computed tomography with large planar receivers, Inverse Problems, 20 (2004), 1663-1673.
doi: 10.1088/0266-5611/20/5/021.
|
[49]
|
S. C. Hornbostel and A. H. Thompson, Waveform design for electroseismic exploration, SEG Technical Program Expanded Abstracts, (2005), 557-560.
doi: 10.1190/1.2144380.
|
[50]
|
Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Problems, 24 (2008), 055006, 25pp.
doi: 10.1088/0266-5611/24/5/055006.
|
[51]
|
M. Ikehata, A remark on an inverse boundary value problem arising in elasticity, Preprint.
|
[52]
|
C. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. Math., 165 (2007), 567-591.
doi: 10.4007/annals.2007.165.567.
|
[53]
|
K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized d-bar method for the inverse conductivity problem, Inverse Problems and Imaging, 3 (2007), 599-624.
doi: 10.3934/ipi.2009.3.599.
|
[54]
|
I. Kocyigit, Acousto-electric tomography and CGO solutions with internal data, Inverse Problems, 28 (2012), 125004, 20pp.
doi: 10.1088/0266-5611/28/12/125004.
|
[55]
|
P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, Euro. J. Appl. Math., 19 (2008), 191-224.
doi: 10.1017/S0956792508007353.
|
[56]
|
P. Kuchment and L. Kunyansky, Synthetic focusing in ultrasound modulated tomography, Inverse Problems and Imaging, 4 (2010), 665-673.
doi: 10.3934/ipi.2010.4.665.
|
[57]
|
P. Kuchment and L. Kunyansky, 2D and 3D reconstructions in acousto-electric tomography, Inverse Problems, 27 (2011), 055013, 21pp.
doi: 10.1088/0266-5611/27/5/055013.
|
[58]
|
L. Kunyansky, B. Holman and B. T. Cox, Photoacoustic tomography in a rectangular reflecting cavity, Inverse Problems, 29 (2013), 125010, 20pp.
doi: 10.1088/0266-5611/29/12/125010.
|
[59]
|
L. Kunyansky and L. Nguyen, A dissipative time reversal technique for photo-acoustic tomography in a cavity, SIAM J. Imaging Sciences, 9 (2016), 748-769.
doi: 10.1137/15M1049683.
|
[60]
|
R.-Y. Lai, Uniqueness and stability of lamé parameters in elastography, Journal of Spectral Theory, 4 (2014), 841-877.
doi: 10.4171/JST/88.
|
[61]
|
C. H. Li, M. Pramanik, G. Ku and L. V. Wang, Image distortion in thermoacoustic tomography caused by microwave diffraction, Phys. Rev. E., 77 (2008), 031923.
doi: 10.1103/PhysRevE.77.031923.
|
[62]
|
Y. B. Lopatinskii, On a method of reducing boundary problems for a system of differential equations of elliptic type to regular equations, Ukrain. Mat. u'Z., 5 (1953), 123-151.
|
[63]
|
J. R. McLaughlin, N. Zhang and A. Manduca, Calculating tissue shear modulus and pressure by 2d log-elastographic methods, Inverse Problems, 26 (2010), 085007, 25pp.
doi: 10.1088/0266-5611/26/8/085007.
|
[64]
|
O. V. Mikhailov, M. W. Haartsen and N. Toksoz, Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling, Geophysics, 62 (1997), 97-105.
doi: 10.1190/1.1444150.
|
[65]
|
O. V. Mikhailov, J. Queen and N. Toksoz, Using borehole electroseismic measurements to detect and characterize fractured (permeable) zones, SEG Technical Program Expanded Abstracts, (1997), 1981-1984.
doi: 10.1190/1.1885835.
|
[66]
|
A. I. Nachman, Reconstructions from boundary measurements, The Annals of Mathematics, 128 (1988), 531-576.
doi: 10.2307/1971435.
|
[67]
|
G. Nakamura and G. Uhlmann, Global uniqueness for an inverse boundary problem arising in elasticity, Invent. Math., 118 (1994), 457-474.
doi: 10.1007/BF01231541.
|
[68]
|
G. Nakamura and G. Uhlmann, Erratum: Global uniqueness for an inverse boundary problem arising in elasticity, Invent. Math., 152 (), 205-207.
|
[69]
|
P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.
doi: 10.1215/S0012-7094-93-07014-7.
|
[70]
|
P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized sommerfeld potentials, SIAM J. Appl. Math., 56 (1996), 1129-1145.
doi: 10.1137/S0036139995283948.
|
[71]
|
S. Patch and O. Scherzer, Photo-and thermo-acoustic imaging, Inverse Problems, 23 (2007), 1-10.
doi: 10.1088/0266-5611/23/6/S01.
|
[72]
|
S. R. Pride, Governing equations for the coupled electro-magnetics and acoustics of porous media, Phys. Rev. B,, 50 (), 5678-1569, 16.
|
[73]
|
S. R. Pride and M. W. Haartsen, Electroseismic wave properties, J. Acoust. Soc. Am., 100 (1996), 1301-1315.
doi: 10.1121/1.416018.
|
[74]
|
J. Ripoll and V. Ntziachristos, Quantitative point source photoacoustic inversion formulas for scattering and absorbing medium, Phys. Rev. E,, 71 (), 031912.
|
[75]
|
J. E. Santos, F. I. Zyserman and P. M. Gauzellino, Numerical electroseismic modeling: A finite element approach, Applied Mathematics and Computation, 218 (2012), 6351-6374.
doi: 10.1016/j.amc.2011.12.003.
|
[76]
|
V. Serov, Inverse fixed energy scattering problem for the generalized nonlinear Schrödinger operator, Inverse Problems, 28 (2012), 025002, 11pp.
doi: 10.1088/0266-5611/28/2/025002.
|
[77]
|
V. A. Solonnikov, Overdetermined elliptic boundary-value problems, J. Math. Sci., 1 (1973), 477-512.
doi: 10.1007/BF01084589.
|
[78]
|
P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 31 (2015), 075011, 16pp.
doi: 10.1088/0266-5611/25/7/075011.
|
[79]
|
P. Stefanov and Y. Yang, Multiwave tomography in a closed domain: Averaged sharp time reversal, Inverse Problems, 31 (2015), 065007, 23pp.
doi: 10.1088/0266-5611/31/6/065007.
|
[80]
|
P. Stefanov and Y. Yang, Multiwave tomography with reflectors: Landweber's iteration,
arXiv: 1603.07045.
|
[81]
|
J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.
doi: 10.2307/1971291.
|
[82]
|
A. H. Thompson, Electromagnetic-to-seismic conversion: Successful developments suggest viable applications in exploration and production, SEG Technical Program Expanded Abstracts, (2005), 554-556.
doi: 10.1190/1.2144379.
|
[83]
|
A. H. Thompson and G. A. Gist, Geophysical applications of electrokinetic conversion, Leading Edge, 12 (1993), 1169-1173.
doi: 10.1190/1.1436931.
|
[84]
|
A. H. Thompson, S. C. Hornbostel, J. S. Burns, T. J. Murray, R. A. Raschke, J. C. Wride, P. Z. McCammon, J. R. Sumner, G. H. Haake, M. S. Bixby, W. S. Ross, B. S. White, M. Zhou and P. K. Peczak, Field tests of electroseismic hydrocarbon detection, SEG Technical Program Expanded Abstracts, (2005), 565-568.
doi: 10.1190/1.2144382.
|
[85]
|
R. R. Thompson, The seismic electric effect, Geophysics, 1 (1936), 327-335.
doi: 10.1190/1.1437119.
|
[86]
|
G. Uhlmann, Developments in inverse problems since Calderón's foundational paper, Harmonic Analysis and Partial Differential Equations, The University of Chicago Press, Chicago, (1999), 295-345.
|
[87]
|
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse Problems, 25 (2009), 123011, 39pp.
doi: 10.1088/0266-5611/25/12/123011.
|
[88]
|
G. Uhlmann and J.-N. Wang, Complex spherical waves for the elasticity system and probing of inclusions, SIAM J. Math. Anal., 38 (2007), 1967-1980.
doi: 10.1137/060651434.
|
[89]
|
G. Uhlmann and J.-N. Wang, Reconstruction of discontinuities in systems, Journal of Physics: Conference Series,, 73 (2007), 012024.
doi: 10.1088/1742-6596/73/1/012024.
|
[90]
|
B. S. White, Asymptotic theory of electroseismic prospecting, SIAM J. Appl. Math., 65 (2005), 1443-1462.
doi: 10.1137/040604108.
|
[91]
|
B. S. White and M. Zhou, Electroseismic prospecting in layered media, SIAM J. Appl. Math., 67 (2006), 69-98.
doi: 10.1137/050633603.
|
[92]
|
M. Xu and L. V. Wang, Photoacoustic imaging in biomedicine, Rev. Sci. Instr., 77 (2006), 041101.
doi: 10.1063/1.2195024.
|
[93]
|
R. J. Zemp, Quantitative photoacoustic tomography with multiple optical sources, Applied Optics, 49 (2010), 3566-3572.
doi: 10.1364/AO.49.003566.
|
[94]
|
H. Zhang and L. V. Wang, Acousto-electric tomography, SPIE, 5320 (2004), 145-149.
doi: 10.1117/12.532610.
|