April  2017, 11(2): 355-372. doi: 10.3934/ipi.2017017

Localization of the interior transmission eigenvalues for a ball

1. 

Université de Bordeaux, Institut de Mathématiques de Bordeaux, 351, Cours de la Libération, 33405 Talence, France

2. 

Université de Nantes, Laboratoire de Mathématiques Jean Leray, 2, rue de la Houssiniére, BP 92208,44322 Nantes Cedex, France

Received  March 2016 Revised  January 2017 Published  March 2017

We study the localization of the interior transmission eigenvalues (ITEs) in the case when the domain is the unit ball $\{x ∈ \mathbb{R}^d:\: |x| ≤ 1\}, \: d≥ 2,$ and the coefficients $c_j(x), \: j =1,2, $ and the indices of refraction $n_j(x), \: j =1,2,$ are constants near the boundary $|x| = 1$. We prove that in this case the eigenvalue-free region obtained in [17] for strictly concave domains can be significantly improved. In particular, if $c_j(x), n_j(x), j = 1,2$ are constants for $|x| ≤ 1$, we show that all (ITEs) lie in a strip $|\operatorname{Im} λ| ≤ C$.

Citation: Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems and Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017
References:
[1]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, in Inverse Problems and Applications, Inside Out Ⅱ, G. Uhlmann, editor, MSRI Publications, Cambridge University Press, Cambridge, 60 (2013), 529-580.

[2]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math., 41 (1988), 97-125.  doi: 10.1093/qjmam/41.1.97.

[3]

D. Colton and Y. -J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues Inverse Problems, 29 (2013), 104008, 6pp. doi: 10.1088/0266-5611/29/10/104008.

[4]

D. Colton, Y. -J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media Inverse Problems, 31 (2015), 035006, 19pp. doi: 10.1088/0266-5611/31/3/035006.

[5]

M. Faierman, The interior transmission problem: Spectral theory, SIAM J. Math. Anal., 46 (2014), 803-819.  doi: 10.1137/130922215.

[6]

M. HitrikK. KrupchykP. Ola and L. Päivärinta, The interior transmission problem and bounds of transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.  doi: 10.4310/MRL.2011.v18.n2.a7.

[7]

A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.  doi: 10.1093/imamat/37.3.213.

[8]

E. Lakshtanov and B. Vainberg, Application of elliptic theory to the isotropic interior transmission eigenvalue problem Inverse Problems, 29 (2013), 104003, 19pp. doi: 10.1088/0266-5611/29/10/104003.

[9]

Y. -J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media Inverse Problems, 28 (2012), 075005, 9pp. doi: 10.1088/0266-5611/28/7/075005.

[10]

F. Olver, Asymptotics and Special Functions, Academic Press, New York, London, 1974.

[11]

H. Pham and P. Stefanov, Weyl asymptotics of the transmission eigenvalues for a constant index of refraction, Inverse Problems and Imaging, 8 (2014), 795-810.  doi: 10.3934/ipi.2014.8.795.

[12]

L. Robbiano, Spectral analysis of interior transmission eigenvalues Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.

[13]

L. Robbiano, Counting function for interior transmission eigenvalues, Mathematical Control and Related Fields, 6 (2016), 167-183.  doi: 10.3934/mcrf.2016.6.167.

[14]

J. Sylvester, Transmission eigenvalues in one dimension Inverse Problems, 29 (2013), 104009, 11pp. doi: 10.1088/0266-5611/29/10/104009.

[15]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectral Theory, to appear.

[16]

G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.  doi: 10.1007/s00220-015-2311-2.

[17]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.  doi: 10.1007/s00208-015-1329-2.

show all references

References:
[1]

F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, in Inverse Problems and Applications, Inside Out Ⅱ, G. Uhlmann, editor, MSRI Publications, Cambridge University Press, Cambridge, 60 (2013), 529-580.

[2]

D. Colton and P. Monk, The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium, Quart. J. Mech. Appl. Math., 41 (1988), 97-125.  doi: 10.1093/qjmam/41.1.97.

[3]

D. Colton and Y. -J. Leung, Complex eigenvalues and the inverse spectral problem for transmission eigenvalues Inverse Problems, 29 (2013), 104008, 6pp. doi: 10.1088/0266-5611/29/10/104008.

[4]

D. Colton, Y. -J. Leung and S. Meng, Distribution of complex transmission eigenvalues for spherically stratified media Inverse Problems, 31 (2015), 035006, 19pp. doi: 10.1088/0266-5611/31/3/035006.

[5]

M. Faierman, The interior transmission problem: Spectral theory, SIAM J. Math. Anal., 46 (2014), 803-819.  doi: 10.1137/130922215.

[6]

M. HitrikK. KrupchykP. Ola and L. Päivärinta, The interior transmission problem and bounds of transmission eigenvalues, Math. Res. Lett., 18 (2011), 279-293.  doi: 10.4310/MRL.2011.v18.n2.a7.

[7]

A. Kirsch, The denseness of the far field patterns for the transmission problem, IMA J. Appl. Math., 37 (1986), 213-225.  doi: 10.1093/imamat/37.3.213.

[8]

E. Lakshtanov and B. Vainberg, Application of elliptic theory to the isotropic interior transmission eigenvalue problem Inverse Problems, 29 (2013), 104003, 19pp. doi: 10.1088/0266-5611/29/10/104003.

[9]

Y. -J. Leung and D. Colton, Complex transmission eigenvalues for spherically stratified media Inverse Problems, 28 (2012), 075005, 9pp. doi: 10.1088/0266-5611/28/7/075005.

[10]

F. Olver, Asymptotics and Special Functions, Academic Press, New York, London, 1974.

[11]

H. Pham and P. Stefanov, Weyl asymptotics of the transmission eigenvalues for a constant index of refraction, Inverse Problems and Imaging, 8 (2014), 795-810.  doi: 10.3934/ipi.2014.8.795.

[12]

L. Robbiano, Spectral analysis of interior transmission eigenvalues Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.

[13]

L. Robbiano, Counting function for interior transmission eigenvalues, Mathematical Control and Related Fields, 6 (2016), 167-183.  doi: 10.3934/mcrf.2016.6.167.

[14]

J. Sylvester, Transmission eigenvalues in one dimension Inverse Problems, 29 (2013), 104009, 11pp. doi: 10.1088/0266-5611/29/10/104009.

[15]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectral Theory, to appear.

[16]

G. Vodev, Transmission eigenvalue-free regions, Comm. Math. Phys., 336 (2015), 1141-1166.  doi: 10.1007/s00220-015-2311-2.

[17]

G. Vodev, Transmission eigenvalues for strictly concave domains, Math. Ann., 366 (2016), 301-336.  doi: 10.1007/s00208-015-1329-2.

[1]

Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167

[2]

Georgi Vodev. Approximation of the elastic Dirichlet-to-Neumann map. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022042

[3]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[4]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[5]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[6]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems and Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[7]

Yuebin Hao. Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1387-1397. doi: 10.3934/cpaa.2020068

[8]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[9]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems and Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[10]

Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158

[11]

David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems and Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13

[12]

Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2491-2507. doi: 10.3934/dcdsb.2016057

[13]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[14]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[15]

Lei-Hong Zhang, Li-Zhi Liao. A generalized projective dynamic for solving extreme and interior eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 997-1019. doi: 10.3934/dcdsb.2008.10.997

[16]

Genni Fragnelli, Dimitri Mugnai. Singular parabolic equations with interior degeneracy and non smooth coefficients: The Neumann case. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1495-1511. doi: 10.3934/dcdss.2020084

[17]

Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443

[18]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[19]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[20]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (223)
  • HTML views (53)
  • Cited by (5)

Other articles
by authors

[Back to Top]