June  2017, 11(3): 455-476. doi: 10.3934/ipi.2017021

Reconstruction in the partial data Calderón problem on admissible manifolds

Department of Mathematics, Northeastern University, Boston, MA 02115, USA

Received  April 2016 Revised  February 2017 Published  April 2017

We consider the problem of developing a method to reconstruct a potential $q$ from the partial data Dirichlet-to-Neumann map for the Schrödinger equation $(-Δ_g+q)u=0$ on a fixed admissible manifold $(M,g)$. If the part of the boundary that is inaccessible for measurements satisfies a flatness condition in one direction, then we reconstruct the local attenuated geodesic ray transform of the one-dimensional Fourier transform of the potential $q$. This allows us to reconstruct $q$ locally, if the local (unattenuated) geodesic ray transform is constructively invertible. We also reconstruct $q$ globally, if $M$ satisfies certain concavity condition and if the global geodesic ray transform can be inverted constructively. These are reconstruction procedures for the corresponding uniqueness results given by Kenig and Salo [7]. Moreover, the global reconstruction extends and improves the constructive proof of Nachman and Street [14] in the Euclidean setting. We derive a certain boundary integral equation which involves the given partial data and describes the traces of complex geometrical optics solutions. For construction of complex geometrical optics solutions, following [14] and improving their arguments, we use a certain family of Green's functions for the Laplace-Beltrami operator and the corresponding single layer potentials. The constructive inversion problem for local or global geodesic ray transforms is one of the major topics of interest in integral geometry.

Citation: Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021
References:
[1]

A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Diff. Eq., 27 (2002), 653-668.  doi: 10.1081/PDE-120002868.  Google Scholar

[2]

A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., (Rio de Janeiro), (1980), 65-73.   Google Scholar

[3]

D. Dos Santos FerreiraC. KenigM. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-17.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[4]

D. Dos Santos FerreiraC. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries, Comm. PDE, 38 (2013), 50-68.  doi: 10.1080/03605302.2012.736911.  Google Scholar

[5]

V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[6]

C. Kenig and M. Salo, Recent progress in the Calderón problem with partial data, Contemp. Math., 615 (2014), 193-222.  doi: 10.1090/conm/615/12245.  Google Scholar

[7]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Analysis & PDE, 6 (2013), 2003-2048.  doi: 10.2140/apde.2013.6.2003.  Google Scholar

[8]

C. KenigM. Salo and G. Uhlmann, Reconstructions from boundary measurements on admissible manifolds, Inverse Probl. Imaging, 5 (2011), 859-877.  doi: 10.3934/ipi.2011.5.859.  Google Scholar

[9]

C. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math.(2), 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[10]

V. Krishnan, On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform, J. Inv. Ill-Posed Problems, 18 (2010), 401-408.  doi: 10.1515/JIIP.2010.017.  Google Scholar

[11]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112.  doi: 10.1002/cpa.3160420804.  Google Scholar

[12]

J. -L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes et Applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.  Google Scholar

[13]

A. Nachman, Reconstructions from boundary measurements, Ann. Math., 128 (1988), 531-576.  doi: 10.2307/1971435.  Google Scholar

[14]

A. Nachman and B. Street, Reconstruction in the Calderón problem with partial data, Comm. PDE, 35 (2010), 375-390.  doi: 10.1080/03605300903296322.  Google Scholar

[15]

R. G. Novikov, Multidimensional inverse spectral problem for the equation $-Δψ+(v(x)-Eu(x))ψ=0$, Funct. Anal. Appl., 22 (1988), 263-272.  doi: 10.1007/BF01077418.  Google Scholar

[16]

L. Pestov and G. Uhlmann, On the Characterization of the Range and Inversion Formulas for the Geodesic X-Ray Transform, International Math. Research Notices, 80 (2004), 4331-4347.  doi: 10.1155/S1073792804142116.  Google Scholar

[17]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.  doi: 10.4310/jdg/1317758872.  Google Scholar

[18]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[19]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math.(2), 125 (1987), 153-169.  doi: 10.2307/1971291.  Google Scholar

[20]

M. E. Taylor, Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences, 115. Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.  Google Scholar

[21]

G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.  Google Scholar

[22]

G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Inventiones Mathematicae, 205 (2016), 83-120.  doi: 10.1007/s00222-015-0631-7.  Google Scholar

show all references

References:
[1]

A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Diff. Eq., 27 (2002), 653-668.  doi: 10.1081/PDE-120002868.  Google Scholar

[2]

A. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., (Rio de Janeiro), (1980), 65-73.   Google Scholar

[3]

D. Dos Santos FerreiraC. KenigM. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-17.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[4]

D. Dos Santos FerreiraC. Kenig and M. Salo, Determining an unbounded potential from Cauchy data in admissible geometries, Comm. PDE, 38 (2013), 50-68.  doi: 10.1080/03605302.2012.736911.  Google Scholar

[5]

V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105.  doi: 10.3934/ipi.2007.1.95.  Google Scholar

[6]

C. Kenig and M. Salo, Recent progress in the Calderón problem with partial data, Contemp. Math., 615 (2014), 193-222.  doi: 10.1090/conm/615/12245.  Google Scholar

[7]

C. Kenig and M. Salo, The Calderón problem with partial data on manifolds and applications, Analysis & PDE, 6 (2013), 2003-2048.  doi: 10.2140/apde.2013.6.2003.  Google Scholar

[8]

C. KenigM. Salo and G. Uhlmann, Reconstructions from boundary measurements on admissible manifolds, Inverse Probl. Imaging, 5 (2011), 859-877.  doi: 10.3934/ipi.2011.5.859.  Google Scholar

[9]

C. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math.(2), 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[10]

V. Krishnan, On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform, J. Inv. Ill-Posed Problems, 18 (2010), 401-408.  doi: 10.1515/JIIP.2010.017.  Google Scholar

[11]

J. Lee and G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097-1112.  doi: 10.1002/cpa.3160420804.  Google Scholar

[12]

J. -L. Lions and E. Magenes, Problémes Aux Limites Non Homogénes et Applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968.  Google Scholar

[13]

A. Nachman, Reconstructions from boundary measurements, Ann. Math., 128 (1988), 531-576.  doi: 10.2307/1971435.  Google Scholar

[14]

A. Nachman and B. Street, Reconstruction in the Calderón problem with partial data, Comm. PDE, 35 (2010), 375-390.  doi: 10.1080/03605300903296322.  Google Scholar

[15]

R. G. Novikov, Multidimensional inverse spectral problem for the equation $-Δψ+(v(x)-Eu(x))ψ=0$, Funct. Anal. Appl., 22 (1988), 263-272.  doi: 10.1007/BF01077418.  Google Scholar

[16]

L. Pestov and G. Uhlmann, On the Characterization of the Range and Inversion Formulas for the Geodesic X-Ray Transform, International Math. Research Notices, 80 (2004), 4331-4347.  doi: 10.1155/S1073792804142116.  Google Scholar

[17]

M. Salo and G. Uhlmann, The attenuated ray transform on simple surfaces, J. Diff. Geom., 88 (2011), 161-187.  doi: 10.4310/jdg/1317758872.  Google Scholar

[18]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. doi: 10.1515/9783110900095.  Google Scholar

[19]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math.(2), 125 (1987), 153-169.  doi: 10.2307/1971291.  Google Scholar

[20]

M. E. Taylor, Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences, 115. Springer, New York, 2011. doi: 10.1007/978-1-4419-7055-8.  Google Scholar

[21]

G. Uhlmann, Inverse problems: Seeing the unseen, Bull. Math. Sci., 4 (2014), 209-279.  doi: 10.1007/s13373-014-0051-9.  Google Scholar

[22]

G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Inventiones Mathematicae, 205 (2016), 83-120.  doi: 10.1007/s00222-015-0631-7.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[3]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[4]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[5]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[6]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[7]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[8]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[9]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[10]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[11]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[12]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[13]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[14]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[15]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[16]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[19]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[20]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (42)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]