We study detecting a boundary corrosion damage in the inaccessible part of a rectangular shaped electrostatic conductor from a one set of Cauchy data specified on an accessible boundary part of conductor. For this nonlinear ill-posed problem, we prove the uniqueness in a very general framework. Then we establish the conditional stability of Hölder type based on some a priori assumptions on the unknown impedance and the electrical current input specified in the accessible part. Finally a regularizing scheme of double regularizing parameters, using the truncation of the series expansion of the solution, is proposed with the convergence analysis on the explicit regularizing solution in terms of a practical average norm for measurement data.
Citation: |
[1] |
G. Alessandrini, L. D. Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement, Inverse Problems, 19 (2003), 973-984.
doi: 10.1088/0266-5611/19/4/312.![]() ![]() ![]() |
[2] |
F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data, Inverse Problems and Imaging, 1 (2007), 229-245.
doi: 10.3934/ipi.2007.1.229.![]() ![]() ![]() |
[3] |
F. Cakoni, Y. Q. Hu and R. Kress, Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging, Inverse Problems, 30 (2014), 105009(19pp).
doi: 10.1088/0266-5611/30/10/105009.![]() ![]() ![]() |
[4] |
F. Cakoni, R. Kress and C. Schuft, Simultaneous reconstruction of shape and impedance in corrosion detection, Methods and Applications of Analysis, 17 (2010), 357-377.
doi: 10.4310/MAA.2010.v17.n4.a3.![]() ![]() ![]() |
[5] |
F. Cakoni, R. Kress and C. Schuft, Integral equations for shape and impedance reconstruction in corrosion detection, Inverse Problems, 26 (2010), 095012(24pp).
doi: 10.1088/0266-5611/26/9/095012.![]() ![]() ![]() |
[6] |
S. Chaabane and M. Jaoua, Identification of Robin coefficients by themeans of boundary measurements, Inverse Problems, 15 (1999), 1425-1438.
doi: 10.1088/0266-5611/15/6/303.![]() ![]() ![]() |
[7] |
J. Cheng and M. Yamamoto, One new strategy for a-priori choice of regularizing parameters in Tikhonov regularization, Inverse Problems, 16 (2000), L31-L38.
doi: 10.1088/0266-5611/16/4/101.![]() ![]() ![]() |
[8] |
H. Eckel and R. Kress, Nonlinear integral equations for the inverse electrical impedance problem, Inverse Problems, 23 (2007), 475-491.
doi: 10.1088/0266-5611/23/2/002.![]() ![]() ![]() |
[9] |
P. Grisvard,
Elliptic Problems in Nonsmooth Domains, SIAM Classics in Applied Mathematics Series, 2011.
doi: 10.1137/1.9781611972030.ch1.![]() ![]() ![]() |
[10] |
G. H. Hu and M. Yamamoto, Hölder stability estimate of Robin coeffcient in corrosion detection with a single boundary measurement, Inverse Problems, 31 (2015), 115009, 20pp.
doi: 10.1088/0266-5611/31/11/115009.![]() ![]() ![]() |
[11] |
V. Isakov,
Inverse Problems for Partial Differential Equations, 2nd edition, Springer, 2006.
![]() ![]() |
[12] |
P. G. Kaup and F. Santosa, Nondestructive evaluation of corrosion damage using electrostatic measurements, J. Nondestruct. Eval., 14 (1995), 127-136.
doi: 10.1007/BF01183118.![]() ![]() |
[13] |
P. G. Kaup, F. Santosa and M. Vogelius, Method for imaging corrosion damage in thin plates from electrostatic data, Inverse Problems, 12 (1996), 279-293.
doi: 10.1088/0266-5611/12/3/008.![]() ![]() |
[14] |
M. V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace's equation, SIAM J. Appl. Math., 51 (1991), 1653-1675.
doi: 10.1137/0151085.![]() ![]() ![]() |
[15] |
R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), 1207-1223.
doi: 10.1088/0266-5611/21/4/002.![]() ![]() ![]() |
[16] |
M. M. Lavrentev, V. G. Romanov and S. P. Shishatskii,
Ill-posed Problems of Mathematical Physics and Analysis, AMS, Trans. Math. Monographs, Vol. 64, Providance, Rhode Island, 1986.
![]() ![]() |
[17] |
L. E. Payne, Bounds in the Cauchy problem for the Laplace equation, Arch. Ration Mech. Anal., 5 (1960), 35-45.
doi: 10.1007/BF00252897.![]() ![]() ![]() |
[18] |
W. Rundell, Recovering an obstacle and its impedance from Cauchy data, Inverse Problems, 24 (2008), 045003(22p).
doi: 10.1088/0266-5611/24/4/045003.![]() ![]() ![]() |
[19] |
T. Shigeta and D. L. Young, Method of fundamental solutions with optimal regularization techniques for the Cauchy problem of the Laplace equation with singular points, J. Comput. Phys., 228 (2009), 1903-1915.
doi: 10.1016/j.jcp.2008.11.018.![]() ![]() ![]() |
[20] |
T. Wei, Y. C. Hon and L. V. Ling, Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators, Engineering Analysis with Boundary Elements, 31 (2007), 373-385.
doi: 10.1016/j.enganabound.2006.07.010.![]() ![]() |
[21] |
J. Wloka,
Partial Differential Equations, Cambridge University Press, Cambridge, UK, 1987.
doi: 10.1017/CBO9781139171755.![]() ![]() ![]() |