August  2017, 11(4): 663-687. doi: 10.3934/ipi.2017031

On the lifting of deterministic convergence rates for inverse problems with stochastic noise

1. 

Technische Universität Chemnitz, Fakultät für Mathematik, D-09107 Chemnitz, Germany

2. 

Radon Institute for Computational and Applied Mathematics (RICAM), Altenbergerstraße 69, A-4040 Linz, Austria

3. 

Radon Institute for Computational and Applied Mathematics (RICAM), (also Industrial Mathematics Institute, Johannes Kepler University Linz), Altenbergerstraße 69, A-4040 Linz, Austria

* Corresponding author: Daniel Gerth

Received  April 2016 Revised  April 2017 Published  June 2017

Fund Project: The first author was supported in part by the Austrian Science Fund (FWF): W1214-N15 and by the German Research Foundation (DFG) under grants HO1454/8-2 and HO1454/10-1.

Both for the theoretical and practical treatment of Inverse Problems, the modeling of the noise is crucial. One either models the measurement via a deterministic worst-case error assumption or assumes a certain stochastic behavior of the noise. Although some connections between both models are known, the communities develop rather independently. In this paper we seek to bridge the gap between the deterministic and the stochastic approach and show convergence and convergence rates for Inverse Problems with stochastic noise by lifting the theory established in the deterministic setting into the stochastic one. This opens the wide field of deterministic regularization methods for stochastic problems without having to do an individual stochastic analysis for each problem.

Citation: Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems & Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031
References:
[1]

S. W. Anzengruber and R. Ramlau, Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators Inverse Problems, 26 (2010), 025001, 17pp. doi: 10.1088/0266-5611/26/2/025001.  Google Scholar

[2]

S. BirkholzG. SteinmeyerS. KokeD. GerthS. Bürger and B. Hofmann, Phase retrieval via regularization in self-diffraction-based spectral interferometry, JOSA B, 32 (2015), 983-992.  doi: 10.1364/JOSAB.32.000983.  Google Scholar

[3]

N. BissantzT. Hohage and A. Munk, Consistency and rates of convergence of nonlinear {T}ikhonov regularization with random noise, Inverse Problems, 20 (2004), 1773-1789.  doi: 10.1088/0266-5611/20/6/005.  Google Scholar

[4]

N. BissantzT. HohageA. Munk and F. Ruymgaart, Convergence rates of general regularization methods for statistical inverse problems and applications, SIAM J. Numer. Anal., 45 (2007), 2610-2636.  doi: 10.1137/060651884.  Google Scholar

[5]

G. Blanchard and P. Mathé, Discrepancy principle for statistical inverse problems with application to conjugate gradient iteration, Inverse Problems, 28 (2012), 115011, 23pp. doi: 10.1088/0266-5611/28/11/115011.  Google Scholar

[6]

V. I. Bogachev, Gaussian Measures, AMS, Providence RI, 1998. doi: 10.1090/surv/062.  Google Scholar

[7]

D. Calvetti and E. Somersalo, An introduction to Bayesian Scientific Computing Ten Lectures on Subjective Computing, Springer, New York, 2007.  Google Scholar

[8]

R. M. CorlessG. H. GonnetD. E. G. HareD. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.  doi: 10.1007/BF02124750.  Google Scholar

[9]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[10]

R. M. Dudley, Real Analysis and Probability Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1989.  Google Scholar

[11]

D. Th. Egoroff, Sur les suites de fonctions mesurables, CR Acad. Sci. Paris, 152 (1911), 244-246.   Google Scholar

[12]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, 1996. doi: 10.1007/978-94-009-1740-8.  Google Scholar

[13]

S. N. Evans and P. B. Stark, Inverse problems as statistics, Inverse Problems, 18 (2002), R55-R97.  doi: 10.1088/0266-5611/18/4/201.  Google Scholar

[14]

K. Fan, Entfernung zweier zufälligen Grössen und die Konvergenz nach Wahrscheinlichkeit, Mathematische Zeitschrift, 49 (1944), 681-683.  doi: 10.1007/BF01174225.  Google Scholar

[15]

M. Gardner, White and brown music, fractal curves and one-over-f fluctuations, Scientific American, 238 (1978), 16-32.   Google Scholar

[16]

D. Gerth, Problem-adapted Regularization for Inverse Problems in the Deterministic and Stochastic Setting, Ph. D thesis, Johannes Kepler University Linz, 2015. Google Scholar

[17]

D. GerthB. HofmannS. BirkholzS. Koke and G. Steinmeyer, Regularization of an autoconvolution problem in ultrashort laser pulse characterization, Inverse Probl. Sci. Eng, 22 (2014), 245-266.  doi: 10.1080/17415977.2013.769535.  Google Scholar

[18]

D. Gerth and R. Ramlau, A stochastic convergence analysis for Tikhonov regularization with sparsity constraints Inverse Problems, 30 (2014), 055009, 24pp. doi: 10.1088/0266-5611/30/5/055009.  Google Scholar

[19]

R. Gorenflo and B. Hofmann, On autoconvolution and regularization, Inverse Problems, 10 (1994), 353-373.  doi: 10.1088/0266-5611/10/2/011.  Google Scholar

[20]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[21]

T. Helin and M. Burger, Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems Inverse Problems, 31 (2015), 085009, 22pp. doi: 10.1088/0266-5611/31/8/085009.  Google Scholar

[22]

A. Hofinger, Ill-posed problems: Extending the Deterministic Theory to a Stochastic Setup, Ph. D thesis, Johannes Kepler University Linz, 2006. Google Scholar

[23]

A. Hofinger, Ill-posed problems: Extending the Deterministic Theory to a Stochastic Setup, Trauner-Verlag, Linz, 2006. Google Scholar

[24]

A. Hofinger, The metrics of prokhorov and ky fan for assessing uncertainty in inverse problems, FWF Sitzungsber. Abt. Ⅱ, 215 (2006), 107–125, Available online http://www.planet-austria.at/0xc1aa500d_0x00239061.pdf  Google Scholar

[25]

A. Hofinger and H. K. Pikkarainen, Convergence rate for the Bayesian approach to linear inverse problems, Inverse Problems, 23 (2007), 2469-2484.  doi: 10.1088/0266-5611/23/6/012.  Google Scholar

[26]

B. Hofmann, Regularization for Applied Inverse and Ill-posed Problems, Teubner Verlagsgesellschaft, Leipzig, 1986. doi: 10.1007/978-3-322-93034-7.  Google Scholar

[27]

T. Hohage and F. Werner, Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data Inverse Problems, 28 (2012), 104004, 15pp. doi: 10.1088/0266-5611/28/10/104004.  Google Scholar

[28]

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, New York, 2005.  Google Scholar

[29]

H. Kekkonen, M. Lassas and S. Siltanen, Analysis of regularized inversion of data corrupted by white Gaussian noise Inverse Problems, 30 (2014), 045009, 18pp. doi: 10.1088/0266-5611/30/4/045009.  Google Scholar

[30]

S. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511551666.  Google Scholar

[31]

M. LassasE. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, 3 (2009), 87-122.  doi: 10.3934/ipi.2009.3.87.  Google Scholar

[32]

A. K. Louis, Inverse und Schlecht Gestellte Probleme, B. G. Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.  Google Scholar

[33]

K. Mosegaard and M. Sambridge, Monte Carlo analysis of inverse problems, Inverse Problems, 18 (2002), R29-R54.  doi: 10.1088/0266-5611/18/3/201.  Google Scholar

[34]

A. Neubauer and H. K. Pikkarainen, Convergence results for the Bayesian inversion theory, J. Inverse Ill-Posed Probl., 16 (2008), 601-613.  doi: 10.1515/JIIP.2008.032.  Google Scholar

[35]

A. M. Stuart, Inverse Problems: A Bayesian perspective, Acta Numerica, 19 (2010), 451-559.  doi: 10.1017/S0962492910000061.  Google Scholar

[36]

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005. doi: 10.1137/1.9780898717921.  Google Scholar

show all references

References:
[1]

S. W. Anzengruber and R. Ramlau, Morozov's discrepancy principle for Tikhonov-type functionals with nonlinear operators Inverse Problems, 26 (2010), 025001, 17pp. doi: 10.1088/0266-5611/26/2/025001.  Google Scholar

[2]

S. BirkholzG. SteinmeyerS. KokeD. GerthS. Bürger and B. Hofmann, Phase retrieval via regularization in self-diffraction-based spectral interferometry, JOSA B, 32 (2015), 983-992.  doi: 10.1364/JOSAB.32.000983.  Google Scholar

[3]

N. BissantzT. Hohage and A. Munk, Consistency and rates of convergence of nonlinear {T}ikhonov regularization with random noise, Inverse Problems, 20 (2004), 1773-1789.  doi: 10.1088/0266-5611/20/6/005.  Google Scholar

[4]

N. BissantzT. HohageA. Munk and F. Ruymgaart, Convergence rates of general regularization methods for statistical inverse problems and applications, SIAM J. Numer. Anal., 45 (2007), 2610-2636.  doi: 10.1137/060651884.  Google Scholar

[5]

G. Blanchard and P. Mathé, Discrepancy principle for statistical inverse problems with application to conjugate gradient iteration, Inverse Problems, 28 (2012), 115011, 23pp. doi: 10.1088/0266-5611/28/11/115011.  Google Scholar

[6]

V. I. Bogachev, Gaussian Measures, AMS, Providence RI, 1998. doi: 10.1090/surv/062.  Google Scholar

[7]

D. Calvetti and E. Somersalo, An introduction to Bayesian Scientific Computing Ten Lectures on Subjective Computing, Springer, New York, 2007.  Google Scholar

[8]

R. M. CorlessG. H. GonnetD. E. G. HareD. J. Jeffrey and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329-359.  doi: 10.1007/BF02124750.  Google Scholar

[9]

I. DaubechiesM. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.  Google Scholar

[10]

R. M. Dudley, Real Analysis and Probability Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1989.  Google Scholar

[11]

D. Th. Egoroff, Sur les suites de fonctions mesurables, CR Acad. Sci. Paris, 152 (1911), 244-246.   Google Scholar

[12]

H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, 1996. doi: 10.1007/978-94-009-1740-8.  Google Scholar

[13]

S. N. Evans and P. B. Stark, Inverse problems as statistics, Inverse Problems, 18 (2002), R55-R97.  doi: 10.1088/0266-5611/18/4/201.  Google Scholar

[14]

K. Fan, Entfernung zweier zufälligen Grössen und die Konvergenz nach Wahrscheinlichkeit, Mathematische Zeitschrift, 49 (1944), 681-683.  doi: 10.1007/BF01174225.  Google Scholar

[15]

M. Gardner, White and brown music, fractal curves and one-over-f fluctuations, Scientific American, 238 (1978), 16-32.   Google Scholar

[16]

D. Gerth, Problem-adapted Regularization for Inverse Problems in the Deterministic and Stochastic Setting, Ph. D thesis, Johannes Kepler University Linz, 2015. Google Scholar

[17]

D. GerthB. HofmannS. BirkholzS. Koke and G. Steinmeyer, Regularization of an autoconvolution problem in ultrashort laser pulse characterization, Inverse Probl. Sci. Eng, 22 (2014), 245-266.  doi: 10.1080/17415977.2013.769535.  Google Scholar

[18]

D. Gerth and R. Ramlau, A stochastic convergence analysis for Tikhonov regularization with sparsity constraints Inverse Problems, 30 (2014), 055009, 24pp. doi: 10.1088/0266-5611/30/5/055009.  Google Scholar

[19]

R. Gorenflo and B. Hofmann, On autoconvolution and regularization, Inverse Problems, 10 (1994), 353-373.  doi: 10.1088/0266-5611/10/2/011.  Google Scholar

[20]

M. HankeA. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.  doi: 10.1007/s002110050158.  Google Scholar

[21]

T. Helin and M. Burger, Maximum a posteriori probability estimates in infinite-dimensional Bayesian inverse problems Inverse Problems, 31 (2015), 085009, 22pp. doi: 10.1088/0266-5611/31/8/085009.  Google Scholar

[22]

A. Hofinger, Ill-posed problems: Extending the Deterministic Theory to a Stochastic Setup, Ph. D thesis, Johannes Kepler University Linz, 2006. Google Scholar

[23]

A. Hofinger, Ill-posed problems: Extending the Deterministic Theory to a Stochastic Setup, Trauner-Verlag, Linz, 2006. Google Scholar

[24]

A. Hofinger, The metrics of prokhorov and ky fan for assessing uncertainty in inverse problems, FWF Sitzungsber. Abt. Ⅱ, 215 (2006), 107–125, Available online http://www.planet-austria.at/0xc1aa500d_0x00239061.pdf  Google Scholar

[25]

A. Hofinger and H. K. Pikkarainen, Convergence rate for the Bayesian approach to linear inverse problems, Inverse Problems, 23 (2007), 2469-2484.  doi: 10.1088/0266-5611/23/6/012.  Google Scholar

[26]

B. Hofmann, Regularization for Applied Inverse and Ill-posed Problems, Teubner Verlagsgesellschaft, Leipzig, 1986. doi: 10.1007/978-3-322-93034-7.  Google Scholar

[27]

T. Hohage and F. Werner, Convergence rates in expectation for Tikhonov-type regularization of inverse problems with Poisson data Inverse Problems, 28 (2012), 104004, 15pp. doi: 10.1088/0266-5611/28/10/104004.  Google Scholar

[28]

J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Springer, New York, 2005.  Google Scholar

[29]

H. Kekkonen, M. Lassas and S. Siltanen, Analysis of regularized inversion of data corrupted by white Gaussian noise Inverse Problems, 30 (2014), 045009, 18pp. doi: 10.1088/0266-5611/30/4/045009.  Google Scholar

[30]

S. Kogan, Electronic Noise and Fluctuations in Solids, Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511551666.  Google Scholar

[31]

M. LassasE. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse Probl. Imaging, 3 (2009), 87-122.  doi: 10.3934/ipi.2009.3.87.  Google Scholar

[32]

A. K. Louis, Inverse und Schlecht Gestellte Probleme, B. G. Teubner, Stuttgart, 1989. doi: 10.1007/978-3-322-84808-6.  Google Scholar

[33]

K. Mosegaard and M. Sambridge, Monte Carlo analysis of inverse problems, Inverse Problems, 18 (2002), R29-R54.  doi: 10.1088/0266-5611/18/3/201.  Google Scholar

[34]

A. Neubauer and H. K. Pikkarainen, Convergence results for the Bayesian inversion theory, J. Inverse Ill-Posed Probl., 16 (2008), 601-613.  doi: 10.1515/JIIP.2008.032.  Google Scholar

[35]

A. M. Stuart, Inverse Problems: A Bayesian perspective, Acta Numerica, 19 (2010), 451-559.  doi: 10.1017/S0962492910000061.  Google Scholar

[36]

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, Philadelphia, 2005. doi: 10.1137/1.9780898717921.  Google Scholar

Figure 1.  $\mathbb{E}(||\epsilon||)^2/ \alpha$ (dashed) and regularization parameter $\alpha$ (solid) versus variance $\eta$. Left: A constant value of $\tau$ in the discrepancy principle with the expectation of the noise leads to the regularization parameter decreasing too fast, thus the deterministic condition $\delta^2/\alpha\rightarrow0$ is violated (dashed line) Right: increasing $\tau$ appropriately with decreasing variance resolves this issue
[1]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[2]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[3]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[4]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[5]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[6]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[7]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[8]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[9]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[10]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[11]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[12]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[13]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[15]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[16]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[17]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (50)
  • HTML views (56)
  • Cited by (1)

Other articles
by authors

[Back to Top]