-
Previous Article
Numerical optimization algorithms for wavefront phase retrieval from multiple measurements
- IPI Home
- This Issue
-
Next Article
Non-convex TV denoising corrupted by impulse noise
Convergence of the gradient method for ill-posed problems
Industrial Mathematics Institute, Johannes Kepler University Linz, Altenbergerstrasse 69,4040 Linz, Austria |
We study the convergence of the gradient descent method for solving ill-posed problems where the solution is characterized as a global minimum of a differentiable functional in a Hilbert space. The classical least-squares functional for nonlinear operator equations is a special instance of this framework, and the gradient method then reduces to Landweber iteration. The main result of this article is a proof of weak and strong convergence under new nonlinearity conditions that generalize the classical tangential cone conditions.
References:
[1] |
K. J. Arrow and A. C. Enthoven,
Quasi-concave programming, Econometrica, 29 (1961), 779-800.
doi: 10.2307/1911819. |
[2] |
M. Avriel, W. E. Diewert, S. Schaible and I. Zang,
Generalized Concavity, vol. 63 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898719437.ch1. |
[3] |
A. Bakushinsky and A. Goncharsky,
Ill-posed Problems: Theory and Applications, vol. 301 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.
doi: 10.1007/978-94-011-1026-6. |
[4] |
A. B. Bakushinsky and M. Y. Kokurin,
Iterative Methods for Approximate Solution of Inverse Problems, vol. 577 of Mathematics and Its Applications (New York), Springer, Dordrecht, 2004. |
[5] |
A. Bakushinsky and A. Smirnova,
A posteriori stopping rule for regularized fixed point iterations, Nonlinear Anal., 64 (2006), 1255-1261.
doi: 10.1016/j.na.2005.06.031. |
[6] |
A. Bakushinsky and A. Smirnova,
Iterative regularization and generalized discrepancy principle for monotone operator equations, Numer. Funct. Anal. Optim., 28 (2007), 13-25.
doi: 10.1080/01630560701190315. |
[7] |
A. B. Bakushinsky, M. Y. Kokurin and A. Smirnova,
Iterative Methods for Ill-Posed Problems, vol. 54 of Inverse and Ill-posed Problems Series, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. |
[8] |
F. E. Browder and W. V. Petryshyn,
Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.
doi: 10.1016/0022-247X(67)90085-6. |
[9] |
A. -P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65-73. |
[10] |
H. W. Engl, M. Hanke and A. Neubauer,
Regularization of Inverse Problems, vol. 375 of Mathematics and its Applications, Kluwer, Dordrecht, 1996.
doi: 10.1007/978-94-009-1740-8. |
[11] |
M. Haltmeier, A. Leitão and O. Scherzer,
Kaczmarz methods for regularizing nonlinear ill-posed equations. Ⅰ. Convergence analysis, Inverse Probl. Imaging, 1 (2007), 289-298.
doi: 10.3934/ipi.2007.1.289. |
[12] |
M. Hanke,
A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.
doi: 10.1088/0266-5611/13/1/007. |
[13] |
M. Hanke, A. Neubauer and O. Scherzer,
A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.
doi: 10.1007/s002110050158. |
[14] |
T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces Inverse Problems, 26 (2002), Art. 055002, 17 pages.
doi: 10.1088/0266-5611/26/5/055002. |
[15] |
N. S. Hoang and A. G. Ramm,
Dynamical systems gradient method for solving nonlinear equations with monotone operators, Acta Appl. Math., 106 (2009), 473-499.
doi: 10.1007/s10440-008-9308-1. |
[16] |
N. S. Hoang and A. G. Ramm,
The dynamical systems method for solving nonlinear equations with monotone operators, Asian-Eur. J. Math., 3 (2010), 57-105.
doi: 10.1142/S1793557110000064. |
[17] |
Q. Jin,
A general convergence analysis of some Newton-type methods for nonlinear inverse problems, SIAM J. Numer. Anal., 49 (2011), 549-573.
doi: 10.1137/100804231. |
[18] |
B. Kaltenbacher,
Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Problems, 13 (1997), 729-753.
doi: 10.1088/0266-5611/13/3/012. |
[19] |
B. Kaltenbacher, A. Neubauer and O. Scherzer,
Iterative Regularization Methods for Nonlinear Ill-Posed Problems, vol. 6 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
doi: 10.1515/9783110208276. |
[20] |
A. Neubauer,
On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 85 (2000), 309-328.
doi: 10.1007/s002110050487. |
[21] |
A. Neubauer,
Some generalizations for Landweber iteration for nonlinear ill-posed problems, Journal Inverse and Ill-posed Problems, 24 (2016), 393-406.
doi: 10.1515/jiip-2015-0086. |
[22] |
S. S. Pereverzyev, R. Pinnau and N. Siedow,
Regularized fixed-point iterations for nonlinear inverse problems, Inverse Problems, 22 (2006), 1-22.
doi: 10.1088/0266-5611/22/1/001. |
[23] |
A. G. Ramm,
Dynamical systems method for ill-posed equations with monotone operators, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 935-940.
doi: 10.1016/j.cnsns.2003.07.002. |
[24] |
O. Scherzer,
Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl., 194 (1995), 911-933.
doi: 10.1006/jmaa.1995.1335. |
[25] |
T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski,
Regularization Methods in Banach Spaces, vol. 10 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2012.
doi: 10.1515/9783110255720. |
[26] |
V. V. Vasin,
Convergence of gradient-type methods for nonlinear equations, Dokl. Akad. Nauk, 359 (1998), 7-9.
|
show all references
References:
[1] |
K. J. Arrow and A. C. Enthoven,
Quasi-concave programming, Econometrica, 29 (1961), 779-800.
doi: 10.2307/1911819. |
[2] |
M. Avriel, W. E. Diewert, S. Schaible and I. Zang,
Generalized Concavity, vol. 63 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898719437.ch1. |
[3] |
A. Bakushinsky and A. Goncharsky,
Ill-posed Problems: Theory and Applications, vol. 301 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.
doi: 10.1007/978-94-011-1026-6. |
[4] |
A. B. Bakushinsky and M. Y. Kokurin,
Iterative Methods for Approximate Solution of Inverse Problems, vol. 577 of Mathematics and Its Applications (New York), Springer, Dordrecht, 2004. |
[5] |
A. Bakushinsky and A. Smirnova,
A posteriori stopping rule for regularized fixed point iterations, Nonlinear Anal., 64 (2006), 1255-1261.
doi: 10.1016/j.na.2005.06.031. |
[6] |
A. Bakushinsky and A. Smirnova,
Iterative regularization and generalized discrepancy principle for monotone operator equations, Numer. Funct. Anal. Optim., 28 (2007), 13-25.
doi: 10.1080/01630560701190315. |
[7] |
A. B. Bakushinsky, M. Y. Kokurin and A. Smirnova,
Iterative Methods for Ill-Posed Problems, vol. 54 of Inverse and Ill-posed Problems Series, Walter de Gruyter GmbH & Co. KG, Berlin, 2011. |
[8] |
F. E. Browder and W. V. Petryshyn,
Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.
doi: 10.1016/0022-247X(67)90085-6. |
[9] |
A. -P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, 65-73. |
[10] |
H. W. Engl, M. Hanke and A. Neubauer,
Regularization of Inverse Problems, vol. 375 of Mathematics and its Applications, Kluwer, Dordrecht, 1996.
doi: 10.1007/978-94-009-1740-8. |
[11] |
M. Haltmeier, A. Leitão and O. Scherzer,
Kaczmarz methods for regularizing nonlinear ill-posed equations. Ⅰ. Convergence analysis, Inverse Probl. Imaging, 1 (2007), 289-298.
doi: 10.3934/ipi.2007.1.289. |
[12] |
M. Hanke,
A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems, 13 (1997), 79-95.
doi: 10.1088/0266-5611/13/1/007. |
[13] |
M. Hanke, A. Neubauer and O. Scherzer,
A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math., 72 (1995), 21-37.
doi: 10.1007/s002110050158. |
[14] |
T. Hein and K. S. Kazimierski, Accelerated Landweber iteration in Banach spaces Inverse Problems, 26 (2002), Art. 055002, 17 pages.
doi: 10.1088/0266-5611/26/5/055002. |
[15] |
N. S. Hoang and A. G. Ramm,
Dynamical systems gradient method for solving nonlinear equations with monotone operators, Acta Appl. Math., 106 (2009), 473-499.
doi: 10.1007/s10440-008-9308-1. |
[16] |
N. S. Hoang and A. G. Ramm,
The dynamical systems method for solving nonlinear equations with monotone operators, Asian-Eur. J. Math., 3 (2010), 57-105.
doi: 10.1142/S1793557110000064. |
[17] |
Q. Jin,
A general convergence analysis of some Newton-type methods for nonlinear inverse problems, SIAM J. Numer. Anal., 49 (2011), 549-573.
doi: 10.1137/100804231. |
[18] |
B. Kaltenbacher,
Some Newton-type methods for the regularization of nonlinear ill-posed problems, Inverse Problems, 13 (1997), 729-753.
doi: 10.1088/0266-5611/13/3/012. |
[19] |
B. Kaltenbacher, A. Neubauer and O. Scherzer,
Iterative Regularization Methods for Nonlinear Ill-Posed Problems, vol. 6 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
doi: 10.1515/9783110208276. |
[20] |
A. Neubauer,
On Landweber iteration for nonlinear ill-posed problems in Hilbert scales, Numer. Math., 85 (2000), 309-328.
doi: 10.1007/s002110050487. |
[21] |
A. Neubauer,
Some generalizations for Landweber iteration for nonlinear ill-posed problems, Journal Inverse and Ill-posed Problems, 24 (2016), 393-406.
doi: 10.1515/jiip-2015-0086. |
[22] |
S. S. Pereverzyev, R. Pinnau and N. Siedow,
Regularized fixed-point iterations for nonlinear inverse problems, Inverse Problems, 22 (2006), 1-22.
doi: 10.1088/0266-5611/22/1/001. |
[23] |
A. G. Ramm,
Dynamical systems method for ill-posed equations with monotone operators, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 935-940.
doi: 10.1016/j.cnsns.2003.07.002. |
[24] |
O. Scherzer,
Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems, J. Math. Anal. Appl., 194 (1995), 911-933.
doi: 10.1006/jmaa.1995.1335. |
[25] |
T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski,
Regularization Methods in Banach Spaces, vol. 10 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2012.
doi: 10.1515/9783110255720. |
[26] |
V. V. Vasin,
Convergence of gradient-type methods for nonlinear equations, Dokl. Akad. Nauk, 359 (1998), 7-9.
|
[1] |
Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems and Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062 |
[2] |
Plamen Stefanov, Yang Yang. Multiwave tomography with reflectors: Landweber's iteration. Inverse Problems and Imaging, 2017, 11 (2) : 373-401. doi: 10.3934/ipi.2017018 |
[3] |
David Maxwell. Kozlov-Maz'ya iteration as a form of Landweber iteration. Inverse Problems and Imaging, 2014, 8 (2) : 537-560. doi: 10.3934/ipi.2014.8.537 |
[4] |
Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems and Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63 |
[5] |
Dang Van Hieu, Le Dung Muu, Pham Kim Quy. New iterative regularization methods for solving split variational inclusion problems. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021185 |
[6] |
Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511 |
[7] |
Philipp Hungerländer, Barbara Kaltenbacher, Franz Rendl. Regularization of inverse problems via box constrained minimization. Inverse Problems and Imaging, 2020, 14 (3) : 437-461. doi: 10.3934/ipi.2020021 |
[8] |
Shiyun Wang, Yong-Jin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 965-976. doi: 10.3934/jimo.2014.10.965 |
[9] |
Abhishake Rastogi. Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4111-4126. doi: 10.3934/cpaa.2020183 |
[10] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems and Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074 |
[11] |
Bin Fan, Mejdi Azaïez, Chuanju Xu. An extension of the landweber regularization for a backward time fractional wave problem. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2893-2916. doi: 10.3934/dcdss.2020409 |
[12] |
Barbara Kaltenbacher, Ivan Tomba. Enhanced choice of the parameters in an iteratively regularized Newton-Landweber iteration in Banach space. Conference Publications, 2015, 2015 (special) : 686-695. doi: 10.3934/proc.2015.0686 |
[13] |
Bruno Sixou, Cyril Mory. Kullback-Leibler residual and regularization for inverse problems with noisy data and noisy operator. Inverse Problems and Imaging, 2019, 13 (5) : 1113-1137. doi: 10.3934/ipi.2019050 |
[14] |
Bernadette N. Hahn. Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems and Imaging, 2015, 9 (2) : 395-413. doi: 10.3934/ipi.2015.9.395 |
[15] |
Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems and Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271 |
[16] |
Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems and Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171 |
[17] |
Xin-He Miao, Jein-Shan Chen. Error bounds for symmetric cone complementarity problems. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 627-641. doi: 10.3934/naco.2013.3.627 |
[18] |
Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems and Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397 |
[19] |
Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial and Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171 |
[20] |
Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1555-1569. doi: 10.3934/jimo.2019017 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]