Algorithm 1 Fixed-point algorithm based on the proximity operators for model (3). |
Input: noisy image |
Initialization: |
repeat |
(a) |
(b) |
until converges or satisfies a stopping criteria. |
Write the output of |
The restored image is |
Restoration of images contaminated by multiplicative noise (also known as speckle noise) is a key issue in coherent image processing. Notice that images under consideration are often highly compressible in certain suitably chosen transform domains. By exploring this intrinsic feature embedded in images, this paper introduces a variational restoration model for multiplicative noise reduction that consists of a term reflecting the observed image and multiplicative noise, a quadratic term measuring the closeness of the underlying image in a transform domain to a sparse vector, and a sparse regularizer for removing multiplicative noise. Being different from popular existing models which focus on pursuing convexity, the proposed sparsity-aware model may be nonconvex depending on the conditions of the parameters of the model for achieving the optimal denoising performance. An algorithm for finding a critical point of the objective function of the model is developed based on coupled fixed-point equations expressed in terms of the proximity operator of functions that appear in the objective function. Convergence analysis of the algorithm is provided. Experimental results are shown to demonstrate that the proposed iterative algorithm is sensitive to some initializations for obtaining the best restoration results. We observe that the proposed method with SAR-BM3D filtering images as initial estimates can remarkably outperform several state-of-art methods in terms of the quality of the restored images.
Citation: |
Figure 2.
(a) PSNR versus number of iterations. (b) Relative error versus number of iterations. Here, various
Figure 3.
(a) PSNR versus number of iterations for
Figure 4.
(a) PSNR versus number of iterations. (b) Relative error versus number of iterations. Here, two different
Figure 5.
Results of various denoising methods on "Cameraman" image corrupted by multiplicative noise with
Figure 6.
Results of various denoising methods on "Remote1" image corrupted by multiplicative noise with
Algorithm 1 Fixed-point algorithm based on the proximity operators for model (3). |
Input: noisy image |
Initialization: |
repeat |
(a) |
(b) |
until converges or satisfies a stopping criteria. |
Write the output of |
The restored image is |
Table 1. Parameter values in our algorithm (Algorithm 1) at various noise levels
| | | | | |||
| 0.306 | 0.0015 | 6.06 | 30 | 250 | 150 | |
| 0.406 | 0.00085 | 15.02 | 30 | 250 | 150 | |
| 0.506 | 0.000108 | 250 | 30 | 255.5 | 90.26 | |
| 0.8 | 0.00001 | 1655.05 | 30 | 290 | 156.26 |
Table 2. Parameter values for all testing algorithms
| Method | | | | | | ||
10 | Ours | 0.569 | 1.0002 | 1.00053 | 20.1 | 425.5 | 20.140 | |
TwL-4V | 3.6/ | 1.0 | 0.3 | |||||
Ⅰ-DIV | 0.31 | 378.0 | | |||||
DZ | 0.07 | 19 | 3.0 | 3.0 | | |||
HMNZ | 0.1 | 10 | 17.5 | |||||
6 | Ours | 0.555 | 0.3885 | 1.005 | 19.6 | 285.5 | 19.667 | |
TwL-4V | 2.9/ | 1.0 | | 0.29 | ||||
Ⅰ-DIV | 0.45 | 918.0 | | |||||
DZ | 0.06 | |||||||
HMNZ | 0.1 | 10 | 9 | |||||
4 | Ours | 0.659 | 0.18515 | 1.0105 | 29.658 | 255.5 | 29.918 | |
TwL-4V | 2.4/ | 1.0 | 0.3 | |||||
Ⅰ-DIV | 0.55 | 658.0 | ||||||
DZ | 0.05 | | ||||||
HMNZ | 0.1 | 10 | 6 | |||||
2 | Ours | 0.8 | 0.000001 | 115.0 | 21.0 | 168 | 26.26 | |
TwL-4V | 1.8/ | 1.0 | 0.3 | |||||
Ⅰ-DIV | 0.84 | 1059.0 | ||||||
DZ | 0.065 | | ||||||
HMNZ | 0.1 | 10 | 1.5 |
Table 3.
PSNR (dB) and CPU time (s) for Ⅰ-DIV[29], DZ[11], TwL-4V[17], HMNZ[14], our algorithm (Algorithm 1 with
Image | Noisy | Ⅰ-DIV | DZ | TwL-4V | HMNZ | Ours | SAR-BM3D | |||
Camer. | 10 | PSNR | 15.61 | 28.69 | 28.30 | 28.83 | 29.96 | 30.15 | 28.89 | |
Time | 6.28 | 86.30 | 6.23 | 66.62 | 117.35+6.03 | 117.35 | ||||
6 | PSNR | 13.39 | 27.35 | 26.93 | 27.59 | 28.46 | 28.53 | 26.35 | ||
Time | 11.40 | 110.36 | 7.33 | 62.86 | 116.59+10.11 | 116.59 | ||||
4 | PSNR | 11.64 | 26.52 | 25.85 | 26.72 | 27.33 | 27.38 | 23.67 | ||
Time | 13.57 | 149.54 | 7.94 | 63.69 | 118.31+13.31 | 118.31 | ||||
2 | PSNR | 8.63 | 24.98 | 24.27 | 25.28 | 25.30 | 25.47 | 16.45 | ||
Time | 15.57 | 190.75 | 9.72 | 62.58 | 124.30+15.20 | 124.30 | ||||
Lena | 10 | PSNR | 15.64 | 28.47 | 27.51 | 28.60 | 29.41 | 29.65 | 28.48 | |
Time | 6.57 | 85.90 | 6.85 | 65.15 | 118.64+6.33 | 118.64 | ||||
6 | PSNR | 13.42 | 27.34 | 26.24 | 27.48 | 28.07 | 28.14 | 25.92 | ||
Time | 12.06 | 106.87 | 7.29 | 63.69 | 116.62+10.42 | 116.62 | ||||
4 | PSNR | 11.68 | 26.64 | 25.45 | 26.72 | 27.01 | 27.37 | 23.63 | ||
Time | 13.78 | 144.34 | 8.48 | 63.03 | 118.32+13.14 | 118.32 | ||||
2 | PSNR | 8.71 | 25.07 | 24.01 | 25.17 | 25.21 | 25.50 | 16.46 | ||
Time | 17.16 | 181.92 | 10.73 | 62.88 | 124.56+15.71 | 124.56 | ||||
Pepp. | 10 | PSNR | 15.93 | 28.83 | 27.20 | 28.86 | 29.13 | 29.53 | 28.09 | |
Time | 6.88 | 84.15 | 7.47 | 65.33 | 116.86+5.62 | 116.86 | ||||
6 | PSNR | 13.70 | 27.95 | 26.15 | 27.92 | 28.12 | 28.51 | 25.78 | ||
Time | 12.46 | 108.44 | 8.16 | 60.54 | 118.31+10.24 | 118.31 | ||||
4 | PSNR | 11.98 | 27.10 | 25.10 | 27.05 | 27.14 | 27.76 | 23.63 | ||
Time | 13.30 | 145.13 | 8.54 | 63.75 | 119.16+12.90 | 119.16 | ||||
2 | PSNR | 8.93 | 25.57 | 23.72 | 25.54 | 25.52 | 25.97 | 16.45 | ||
Time | 17.44 | 188.50 | 10.59 | 61.59 | 115.71+15.03 | 115.71 | ||||
Rem.1 | 10 | PSNR | 16.27 | 25.22 | 25.15 | 25.33 | 26.16 | 26.21 | 25.43 | |
Time | 12.94 | 190.94 | 12.78 | 108.13 | 210.80+11.14 | 210.80 | ||||
6 | PSNR | 14.00 | 24.17 | 24.01 | 24.41 | 25.02 | 25.07 | 23.64 | ||
Time | 23.09 | 222.15 | 13.63 | 102.92 | 211.02+23.01 | 211.02 | ||||
4 | PSNR | 12.28 | 23.48 | 23.01 | 23.68 | 24.03 | 23.98 | 22.20 | ||
Time | 27.56 | 286.88 | 14.95 | 105.97 | 211.00+26.75 | 211.00 | ||||
2 | PSNR | 9.28 | 22.39 | 21.80 | 22.57 | 22.63 | 22.76 | 16.45 | ||
Time | 32.09 | 347.21 | 17.75 | 99.72 | 211.89+28.51 | 211.89 | ||||
Rem.2 | 10 | PSNR | 16.23 | 25.56 | 25.59 | 25.63 | 26.76 | 26.69 | 25.92 | |
Time | 9.16 | 144.40 | 9.58 | 84.96 | 163.00+8.90 | 163.00 | ||||
6 | PSNR | 14.02 | 24.55 | 24.30 | 24.45 | 25.25 | 25.43 | 24.07 | ||
Time | 17.46 | 164.92 | 9.94 | 85.24 | 162.70+17.03 | 162.70 | ||||
4 | PSNR | 12.27 | 23.45 | 23.38 | 23.63 | 23.93 | 24.26 | 22.26 | ||
Time | 22.75 | 219.99 | 11.79 | 78.15 | 163.07+20.35 | 163.07 | ||||
2 | PSNR | 9.22 | 22.01 | 21.86 | 22.18 | 22.12 | 22.72 | 16.08 | ||
Time | 25.86 | 271.57 | 14.01 | 75.17 | 162.84+24.02 | 162.84 |
[1] |
G. Aubert and J. Aujol, A variational approach to removing multiplicative noise, SIAM J. Appl. Math., 68 (2008), 925-946.
doi: 10.1137/060671814.![]() ![]() ![]() |
[2] |
R. Bamler, Principles of synthetic aperture radar, Surv. Geophys., 21 (2000), 147-157.
![]() |
[3] |
H. L. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, AMS Books in Mathematics, Springer New York, 2011.
doi: 10.1007/978-1-4419-9467-7.![]() ![]() ![]() |
[4] |
J. M. Bioucas-Dias and M. A. T. Figueiredo, Multiplicative noise removal using variable
splitting and constrained optimization, IEEE Trans. Image Process., 19 (2010), 1720-1730.
doi: 10.1109/TIP.2010.2045029.![]() ![]() ![]() |
[5] |
M. F. C. Chesneau and J. Starck, Stein block thresholding for image denoising, Appl. Computat. Harmon. Anal., 28 (2010), 67-88.
doi: 10.1016/j.acha.2009.07.003.![]() ![]() ![]() |
[6] |
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3d transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.![]() ![]() ![]() |
[7] |
D. Dai, L. Shen, Y. Xu and N. Zhang, Noisy 1-bit compressive sensing: Models and algorithms, Appl. Computat. Harmon. Anal., 40 (2016), 1-32.
doi: 10.1016/j.acha.2014.12.001.![]() ![]() ![]() |
[8] |
I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS Conf. Series Appl. Math., SIAM, Philadelphia, 1992.
doi: 10.1137/1.9781611970104.![]() ![]() ![]() |
[9] |
I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14 (2003), 1-46.
doi: 10.1016/S1063-5203(02)00511-0.![]() ![]() ![]() |
[10] |
L. Denis, F. Tupin, J. Darbon and M. Sigelle, SAR image regularization with fast approximation discrete minimization, IEEE Trans. Image Process., 18 (2009), 1588-1600.
doi: 10.1109/TIP.2009.2019302.![]() ![]() ![]() |
[11] |
Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM J. Imag. Sci., 6 (2013), 1598-1625.
doi: 10.1137/120870621.![]() ![]() ![]() |
[12] |
S. Durand, J. Fadili and M. Nikolova, Multiplicative noise removal using l1 fidelity on frame coefficients, J. Math. Imag. Vis., 36 (2010), 201-226.
![]() |
[13] |
J. W. Goodman, Some fundamental properties of speckle, J. Opt. Soc. of Amer., 66 (1976), 1145-1150.
doi: 10.1364/JOSA.66.001145.![]() ![]() |
[14] |
Y. Hang, L. Moisan, M. K. Ng and T. Zeng, Multiplicative noise removal via a learned dictionary, IEEE Trans. Image Process., 21 (2012), 4534-4543.
doi: 10.1109/TIP.2012.2205007.![]() ![]() ![]() |
[15] |
Y.-H. Huang, H. Yan and T. Zeng, Multiplicative noise removal based on unbiased box-cox transformation, Communications in Computational Physics, 22 (2017), 803-828.
doi: 10.4208/cicp.OA-2016-0074.![]() ![]() ![]() |
[16] |
Y.-M. Huang, M. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM J. Imag. Sci., 2 (2009), 20-40.
doi: 10.1137/080712593.![]() ![]() ![]() |
[17] |
M. Kang, S. Yun and H. Woo, Two-level convex relaxed variational model for multiplicative denoising, SIAM J. Imag. Sci., 6 (2013), 875-903.
doi: 10.1137/11086077X.![]() ![]() ![]() |
[18] |
D. Lazard, Quantifier elimination: Optimal solution for two classical examples, J. Symbol. Comput., 5 (1988), 261-266.
doi: 10.1016/S0747-7171(88)80015-4.![]() ![]() ![]() |
[19] |
F. Li, M. K. Ng and C. Shen, Multiplicative noise removal with spatially varying regularization parameters, SIAM J. Imag. Sci., 3 (2010), 1-20.
doi: 10.1137/090748421.![]() ![]() ![]() |
[20] |
J. Lu, L. Shen, C. Xu and Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 41 (2016), 518-539.
doi: 10.1016/j.acha.2015.10.003.![]() ![]() ![]() |
[21] |
C. A. Micchelli, L. Shen and Y. Xu, Proximity algorithms for image models: Denoising Inverse Probl., 27 (2011), 045009(30pp).
doi: 10.1088/0266-5611/27/4/045009.![]() ![]() ![]() |
[22] |
J.-J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien, C.R. Acad. Sci. Paris Sér. A Math., 255 (1962), 2897-2899.
![]() ![]() |
[23] |
Y. Nesterov, Introductory Lectures on Convex Optimization, Kluwer, Boston, 2004.
doi: 10.1007/978-1-4419-8853-9.![]() ![]() ![]() |
[24] |
C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Imaging, SciTech Publishing, Raleigh, NC, 2004.
![]() |
[25] |
S. Parrilli, M. Poderico, C. V. Angelino and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Trans. Geosci. Remote Sens., 50 (2012), 606-616.
doi: 10.1109/TGRS.2011.2161586.![]() ![]() |
[26] |
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.![]() ![]() ![]() |
[27] |
J. M. Schmitt, S. H. Xiang and K. M. Yung, Speckle in optical coherence tomography, J. Biomed. Opt., 4 (1999), 95-105.
doi: 10.1117/1.429925.![]() ![]() |
[28] |
J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise removal, SIAM J. Imag. Sci., 1 (2008), 294-321.
doi: 10.1137/070689954.![]() ![]() ![]() |
[29] |
G. Steidl and T. Teuber, Removing multiplicative noise by Douglad-Rachford splitting methods, J. Math. Imag. Vis., 36 (2010), 168-184.
doi: 10.1007/s10851-009-0179-5.![]() ![]() ![]() |
[30] |
T. Teuber and A. Lang, Nonlocal filters for removing multiplicative noise, Proc. of SSVM, LNCS, 6667 (2012), 50-61.
doi: 10.1007/978-3-642-24785-9_5.![]() ![]() |
[31] |
R. F. Wagner, S. W. Smith, J. M. Sandrik and H. Lopez, Statistics of speckle in ultrasound
B-scans, IEEE Trans. Sonics and Ultrason., 30 (1983), 156-163.
doi: 10.1109/T-SU.1983.31404.![]() ![]() |
[32] |
S. Yun and H. Woo, A new multiplicative denoising variational model based on m-th root transformation, IEEE Trans. Image Process., 21 (2012), 2523-2533.
doi: 10.1109/TIP.2012.2185942.![]() ![]() ![]() |