[1]
|
A. Beck and M. Teboulle, Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems, IEEE Transactions on Image Processing, 18 (2009), 2419-2434.
doi: 10.1109/TIP.2009.2028250.
|
[2]
|
K. Block, M. Uecker and J. Frahm, Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint, Magnetic Resonance in Medicine, 57 (2007), 1086-1098.
doi: 10.1002/mrm.21236.
|
[3]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine Learning, 3 (2011), 1-122.
doi: 10.1561/2200000016.
|
[4]
|
Y. Chen, W. Hager, F. Huang, D. Phan, X. Ye and W. Yin, Fast algorithms for image reconstruction with application to partially parallel MR imaging, SIAM Journal on Imaging Sciences, 5 (2012), 90-118.
doi: 10.1137/100792688.
|
[5]
|
Y. Chen, W. Hager, M. Yashtini and X. Ye, Bregman operator splitting with variable stepsize for total variation image reconstruction, Computational Optimization and Applications, 54 (2013), 317-342.
doi: 10.1007/s10589-012-9519-2.
|
[6]
|
W. Deng and W. Yin, On the global and linear convergence of the generalized alternating direction method of multipliers, Journal of Scientific Computing, 66 (2012), 1-28.
doi: 10.1007/s10915-015-0048-x.
|
[7]
|
D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582.
|
[8]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[9]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problémes de Dirichlet non linéaires, Revue française d'automatique, informatique, recherche opérationnelle. Analyse numérique, 9 (1975), 41-76.
|
[10]
|
D. Goldfarb, S. Ma and K. Scheinberg, Fast multiple-splitting algorithms for convex optimization, SIAM Journal on Optimization, 22 (2012), 533-556.
doi: 10.1137/090780705.
|
[11]
|
T. Goldstein, B. O'Donoghue, S. Setzer and R. Baraniuk, Fast alternating direction optimization methods, SIAM Journal on Imaging Sciences, 7 (2014), 1588-1623.
doi: 10.1137/120896219.
|
[12]
|
T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[13]
|
W. Hager, C. Ngo, M. Yashtini and H. Zhang, An alternating direction approximate Newton algorithm for ill-conditioned inverse problems with application to parallel MRI, Name of the Journal, 3 (2015), 139-162.
doi: 10.1007/s40305-015-0078-y.
|
[14]
|
W. Hager, M. Yashtini and H. Zhang, An $\backslash$mathcalO(1/k) convergence rate for the variable stepsize Bregman operator splitting algorithm, SIAM Journal on Numerical Analysis, 54 (2016), 1535-1556.
doi: 10.1137/15100401X.
|
[15]
|
M. Hong and Z. Luo, On the linear convergence of the alternating direction method of multipliers, Mathematical Programming, 162 (2017), 165-199, arXiv:1208.3922.
doi: 10.1007/s10107-016-1034-2.
|
[16]
|
C. Li, W. Yin, H. Jiang and Y. Zhang, An efficient augmented Lagrangian method with applications to total variation minimization, Computational Optimization and Applications, 56 (2013), 507-530.
doi: 10.1007/s10589-013-9576-1.
|
[17]
|
Q. Liu, J. Luo, S. Wang M. Xiao and M. Ye, An augmented Lagrangian multi-scale dictionary learning algorithm EURASIP Journal on Advances in Signal Processing, 2011 (2011), p58.
doi: 10.1186/1687-6180-2011-58.
|
[18]
|
M. Lustig, D. Donoho and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magnetic Resonance in Medicine, 58 (2007), 1182-1195.
doi: 10.1002/mrm.21391.
|
[19]
|
R. Monteiro and B. Svaiter, Iteration-complexity of block-decomposition algorithms and the alternating direction method of multipliers, SIAM Journal on Optimization, 23 (2013), 475-507.
doi: 10.1137/110849468.
|
[20]
|
Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming, 103 (2005), 127-152.
doi: 10.1007/s10107-004-0552-5.
|
[21]
|
Y. Ouyang, Y. Chen, G. Lan and E. Pasiliao, An accelerated linearized alternating direction method of multipliers, SIAM Journal on Imaging Sciences, 8 (2015), 644-681.
doi: 10.1137/14095697X.
|
[22]
|
K. Pruessmann, M. Weiger, P. Börnert and P. Boesiger, Advances in sensitivity encoding with arbitrary k-space trajectories, Magnetic Resonance in Medicine, 46 (2001), 638-651.
|
[23]
|
K. Scheinberg, D. Goldfarb and X. Bai, Fast first-order methods for composite convex optimization with backtracking, Foundations of Computational Mathematics, 14 (2014), 389-417.
doi: 10.1007/s10208-014-9189-9.
|
[24]
|
L. Shepp and B. Logan, The Fourier reconstruction of a head section, IEEE Transactions on Nuclear Science, 21 (1974), 21-43.
doi: 10.1109/TNS.1974.6499235.
|
[25]
|
Y. Wang, J. Yang, W. Yin and Y. Zhang A new alternating minimization algorithm for total variation image reconstruction, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272.
doi: 10.1137/080724265.
|
[26]
|
B. Wohlberg, Efficient Algorithms for Convolutional Sparse Representations, IEEE Transactions on Image Processing, 25 (2016), 301-315.
doi: 10.1109/TIP.2015.2495260.
|
[27]
|
J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data, IEEE Journal of Selected Topics in Signal Processing, 4 (2010), 288-297.
|
[28]
|
X. Ye, Y. Chen and F. Huang, Computational acceleration for MR image reconstruction in partially parallel imaging, IEEE Transactions on Medical Imaging, 30 (2011), 1055-1063.
|
[29]
|
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM Journal on Imaging Sciences, 3 (2010), 253-276.
doi: 10.1137/090746379.
|
[30]
|
X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on Bregman iteration, Journal of Scientific Computing, 46 (2011), 20-46.
doi: 10.1007/s10915-010-9408-8.
|
[31]
|
M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, (2008), 8-34.
|
[32]
|
M. Zhu, S. Wright and T. Chan, Duality-based algorithms for total-variation-regularized image restoration, Computational Optimization and Applications, 47 (2010), 377-400.
doi: 10.1007/s10589-008-9225-2.
|