
- Previous Article
- IPI Home
- This Issue
-
Next Article
Near-field imaging of sound-soft obstacles in periodic waveguides
The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary
6 quai Watier, BP 49, Chatou, 78401, CEDEX, France |
We extend the applicability of the Generalized Linear Sampling Method (GLSM)[
References:
[1] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Problems and Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[2] |
L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp.
doi: 10.1088/0266-5611/30/3/035011. |
[3] |
L. Audibert and H. Haddar,
The generalized linear sampling method for limited aperture measurements, SIAM J. Imaging Sci., 10 (2017), 845-870.
doi: 10.1137/16M110112X. |
[4] |
A.-S. Bonnet-Ben Dhia, L. Chesnel and H. Haddar,
On the use of $T$-coercivity to study the interior transmission eigenvalue problem, C. R. Math. Acad. Sci. Paris, 349 (2011), 647-651.
doi: 10.1016/j.crma.2011.05.008. |
[5] |
F. Cakoni and D. Colton,
Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. An introduction. |
[6] |
F. Cakoni, D. Colton and H. Haddar,
Inverse Scattering Theory and Transmission Eigenvalues, volume 88 of CBMS Series publications, 2016.
doi: 10.1137/1.9781611974461.ch1. |
[7] |
F. Cakoni and I. Harris, The factorization method for a defective region in an anisotropic material, Inverse Problems, 31 (2015), 025002, 22pp.
doi: 10.1088/0266-5611/31/2/025002. |
[8] |
H. Haddar, F. Cakoni and S. Meng,
Boundary integral equations for the transmission eigenvalue problem for aaxwell equations, J. Integral Equations Appl., 27 (2015), 375-406.
doi: 10.1216/JIE-2015-27-3-375. |
[9] |
A. Cossonnière and H. Haddar,
Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.
doi: 10.1216/JIE-2013-25-3-341. |
[10] |
L. Evgeny and L. Armin, Monotonicity in inverse medium scattering, |
[11] |
B. Gebauer,
The factorization method for real elliptic problems, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 81-102.
doi: 10.4171/ZAA/1279. |
[12] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. |
[13] |
P. Grisvard,
Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985. |
[14] |
A. Kirsch,
The factorization method for a class of inverse elliptic problems, Mathematische Nachrichten, 278 (2005), 258-277.
doi: 10.1002/mana.200310239. |
[15] |
A. Kirsch,
A note on Sylvester's proof of discreteness of interior transmission eigenvalues, Comptes Rendus Mathématique, 354 (2016), 377-382.
doi: 10.1016/j.crma.2016.01.015. |
[16] |
A. Kirsch and N. Grinberg,
The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008. |
[17] |
J. Sylvester,
Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.
doi: 10.1137/110836420. |
[18] |
J. Yang, B. ~Zhang and H. Zhang,
The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM Journal of Applied Mathematics, 73 (2013), 617-635.
doi: 10.1137/120883724. |
show all references
References:
[1] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Problems and Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[2] |
L. Audibert and H. Haddar, A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 035011, 20pp.
doi: 10.1088/0266-5611/30/3/035011. |
[3] |
L. Audibert and H. Haddar,
The generalized linear sampling method for limited aperture measurements, SIAM J. Imaging Sci., 10 (2017), 845-870.
doi: 10.1137/16M110112X. |
[4] |
A.-S. Bonnet-Ben Dhia, L. Chesnel and H. Haddar,
On the use of $T$-coercivity to study the interior transmission eigenvalue problem, C. R. Math. Acad. Sci. Paris, 349 (2011), 647-651.
doi: 10.1016/j.crma.2011.05.008. |
[5] |
F. Cakoni and D. Colton,
Qualitative Methods in Inverse Scattering Theory, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. An introduction. |
[6] |
F. Cakoni, D. Colton and H. Haddar,
Inverse Scattering Theory and Transmission Eigenvalues, volume 88 of CBMS Series publications, 2016.
doi: 10.1137/1.9781611974461.ch1. |
[7] |
F. Cakoni and I. Harris, The factorization method for a defective region in an anisotropic material, Inverse Problems, 31 (2015), 025002, 22pp.
doi: 10.1088/0266-5611/31/2/025002. |
[8] |
H. Haddar, F. Cakoni and S. Meng,
Boundary integral equations for the transmission eigenvalue problem for aaxwell equations, J. Integral Equations Appl., 27 (2015), 375-406.
doi: 10.1216/JIE-2015-27-3-375. |
[9] |
A. Cossonnière and H. Haddar,
Surface integral formulation of the interior transmission problem, J. Integral Equations Appl., 25 (2013), 341-376.
doi: 10.1216/JIE-2013-25-3-341. |
[10] |
L. Evgeny and L. Armin, Monotonicity in inverse medium scattering, |
[11] |
B. Gebauer,
The factorization method for real elliptic problems, Zeitschrift für Analysis und ihre Anwendungen, 25 (2006), 81-102.
doi: 10.4171/ZAA/1279. |
[12] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. |
[13] |
P. Grisvard,
Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, Pitman (Advanced Publishing Program), Boston, MA, 1985. |
[14] |
A. Kirsch,
The factorization method for a class of inverse elliptic problems, Mathematische Nachrichten, 278 (2005), 258-277.
doi: 10.1002/mana.200310239. |
[15] |
A. Kirsch,
A note on Sylvester's proof of discreteness of interior transmission eigenvalues, Comptes Rendus Mathématique, 354 (2016), 377-382.
doi: 10.1016/j.crma.2016.01.015. |
[16] |
A. Kirsch and N. Grinberg,
The Factorization Method for Inverse Problems, volume 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008. |
[17] |
J. Sylvester,
Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.
doi: 10.1137/110836420. |
[18] |
J. Yang, B. ~Zhang and H. Zhang,
The factorization method for reconstructing a penetrable obstacle with unknown buried objects, SIAM Journal of Applied Mathematics, 73 (2013), 617-635.
doi: 10.1137/120883724. |

[1] |
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033 |
[2] |
Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036 |
[3] |
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 |
[4] |
Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681 |
[5] |
Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757 |
[6] |
Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016 |
[7] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[8] |
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 |
[9] |
Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022050 |
[10] |
Tielei Zhu, Jiaqing Yang. A non-iterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022009 |
[11] |
Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025 |
[12] |
Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103 |
[13] |
Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 |
[14] |
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 |
[15] |
Laurent Bourgeois, Arnaud Recoquillay. The Linear Sampling Method for Kirchhoff-Love infinite plates. Inverse Problems and Imaging, 2020, 14 (2) : 363-384. doi: 10.3934/ipi.2020016 |
[16] |
Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163 |
[17] |
Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123 |
[18] |
Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062 |
[19] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[20] |
Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems and Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]