|
R. Alaifari, M. Defrise and A. Katsevich, Stability estimates for the regularized inversion of the truncated Hilbert transform, Inverse Problems, 32 (2016), 065005, 17 pp, arXiv: 1507.01141.
|
|
T. Aubin, Nonlinear Analysis on Manifolds: Monge-Ampére Equations, Grundlehren der mathematischen Wissenschaften, Springer, New York, 1982.
|
|
R. Clackdoyle
and F. Noo
, A large class of inversion formulae for the 2-d Radon transform of functions of compact support, Inverse Problems, 20 (2004)
, 1281-1291.
|
|
M. Defrise
and R. Clack
, A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection, Medical Imaging, IEEE Transactions on, 13 (1994)
, 186-195.
|
|
M. Defrise
, F. Noo
, R. Clackdoyle
and H. Kudo
, Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Problems, 22 (2006)
, 1037-1053.
|
|
L. Feldkamp
, L. Davis
and J. Kress
, Practical cone-beam algorithm, JOSA A, 1 (1984)
, 612-619.
|
|
P. Grangeat, Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform, in Mathematical Methods in Tomography (eds. G. Herman, K. Louis and F. Natterer), Lecture Notes in Mathematics, Springer Verlag, Berlin, 1497 (1991), 66-97.
|
|
W. Han
, H. Yu
and G. Wang
, A general total variation minimization theorem for compressed sensing based interior tomography, Journal of Biomedical Imaging, 2009 (2009)
, 1-3.
|
|
S. Helgason, The Radon transform on ${R}^n$, in Integral Geometry and Radon Transforms, Springer, New York, 2011, 1-62.
|
|
W. Huda
, W. Randazzo
and S. Tipnis
, Embryo dose estimates in body CT, AJR Am. J. Roentgenol, 194 (2010)
, 874-880.
|
|
C. Kamphuis
and F. Beekman
, Accelerated iterative transmission ct reconstruction using an ordered subsets convex algorithm, Medical Imaging, IEEE Transactions on, 17 (1998)
, 1101-1105.
|
|
A. Katsevich
, Theoretically exact filtered backprojection-type inversion algorithm for spiral CT, SIAM Journal on Applied Mathematics, 62 (2002)
, 2012-2026.
|
|
A. Katsevich
, A general scheme for constructing inversion algorithms for cone beam CT, International Journal of Mathematics and Mathematical Sciences, 2003 (2003)
, 1305-1321.
|
|
A. Katsevich
, An improved exact filtered backprojection algorithm for spiral computed tomography, Advances in Applied Mathematics, 32 (2004)
, 681-697.
|
|
A. Katsevich
, Stability estimates for helical computer tomography, Journal of Fourier Analysis and Applications, 11 (2005)
, 85-105.
|
|
E. Katsevich, A. Katsevich and G. Wang, Stability of the interior problem with polynomial attenuation in the region of interest,
Inverse Problems, 28(2012), 065022, 28pp.
|
|
J. Kim
, K. Y. Kwak
, S.-B. Park
and Z. H. Cho
, Projection space iteration reconstruction-reprojection, Medical Imaging, IEEE Transactions on, 4 (1985)
, 139-143.
|
|
E. Klann, E. Quinto and R. Ramlau, Wavelet methods for a weighted sparsity penalty for region of interest tomography,
Inverse Problems, 31(2015), 025001, 22pp.
|
|
H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography,
Physics in Medicine and Biology, 53(2008), 2207.
|
|
C. I. Lee
, A. H. Haims
and E. P. Monico
, Diagnostic CT scans: Assessment of patient, physician, and radiologist awareness of radiation dose and possible risks, Radiology, 231 (2004)
, 393-398.
|
|
S. Mallat,
A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edition, Academic Press, 2008.
|
|
M. Nassi
, W. R. Brody
, B. P. Medoff
and A. Macovski
, Iterative reconstruction-reprojection: An algorithm for limited data cardiac-computed tomography, Biomedical Engineering, IEEE Transactions on, 29 (1982)
, 333-341.
|
|
F. Natterer,
The Mathematics of Computerized Tomography, SIAM: Society for Industrial and Applied Mathematics, 2001.
|
|
F. Natterer and F. Wubbeling,
Mathematical Methods in Image Reconstruction, SIAM: Society for Industrial and Applied Mathematics, 2001.
|
|
F. Noo
, M. Defrise
, R. Clackdoyle
and H. Kudo
, Image reconstruction from fan-beam projections on less than a short scan, Physics in Medicine and Biology, 47 (2002)
, 2525-2546.
|
|
A. Sen,
Searchlight {CT}: A New Regularized Reconstruction Method for Highly Collimated X-ray Tomography, Ph. D. thesis, University of Houston, 2012.
|
|
H. Tuy
, An inversion formula for cone-beam reconstruction, SIAM Journal on Applied Mathematics, 43 (1983)
, 546-552.
|
|
G. Wang
and H. Yu
, The meaning of interior tomography, Physics in Medicine and Biology, 58 (2013)
, 161-186.
|
|
G. Yan
, J. Tian
, S. Zhu
, C. Qin
, Y. Dai
, F. Yang
, D. Dong
and P. Wu
, Fast Katsevich algorithm based on GPU for helical cone-beam computed tomography, Information Technology in Biomedicine, IEEE Transactions on, 14 (2010)
, 1053-1061.
|
|
J. Yang, H. Yu, M. Jiang and G. Wang, High-order total variation minimization for interior tomography,
Inverse Problems, 26(2010), 035013, 29pp.
|
|
Y. Ye, H. Yu and G. Wang, Exact interior reconstruction with cone-beam CT,
International Journal of Biomedical Imaging, 2007(2007), Article ID 10693, 5 pages.
doi: 10.1155/2007/10693.
|
|
Y. Ye, H. Yu, Y. Wei and G. Wang, A general local reconstruction approach based on a truncated Hilbert transform, International Journal of Biomedical Imaging, 2007(2007), Article ID 63634, 8 pages.
doi: 10.1155/2007/63634.
|
|
H. Yu
and G. Wang
, Studies on implementation of the Katsevich algorithm for spiral cone-beam CT, Journal of X-Ray Science and Technology, 12 (2004)
, 97-116.
|
|
H. Yu
and G. Wang
, Compressed sensing based interior tomography, Physics in Medicine and Biology, 54 (2009)
, 2791-2805.
|
|
G. L. Zeng, R. Clack and G. T. Gullberg, Implementation of Tuy's cone-beam inversion formula, Physics in Medicine and Biology, 39 (1994), p493.
doi: 10.1088/0031-9155/39/3/014.
|
|
S. Zhao
, H. Yu
and G. Wang
, A unified framework for exact cone-beam reconstruction formulas, Medical Physics, 32 (2005)
, 1712-1721.
doi: 10.1118/1.1869632.
|
|
A. Ziegler, T. Nielsen and M. Grass, Iterative reconstruction of a region of interest for transmission tomography, Medical Imaging 2006: Physics of Medical Imaging, 6142 (2006), 614223.
doi: 10.1117/12.650666.
|