February  2018, 12(1): 59-90. doi: 10.3934/ipi.2018003

Generalized stability estimates in inverse transport theory

1. 

University of Chicago, 5747 S. Ellis Avenue, Jones 120B, Chicago, IL 60637, USA

2. 

Laboratoire de Mathématiques Paul Painlevé, CNRS UMR 8524/Université Lille 1 Sciences et Technologies, 59655 Villeneuve d'Ascq Cedex, France

* Corresponding author: Alexandre Jollivet

Received  March 2017 Published  December 2017

Inverse transport theory concerns the reconstruction of the absorption and scattering coefficients in a transport equation from knowledge of the albedo operator, which models all possible boundary measurements. Uniqueness and stability results are well known and are typically obtained for errors of the albedo operator measured in the $L^1$ sense. We claim that such error estimates are not always very informative. For instance, arbitrarily small blurring and misalignment of detectors result in $O(1)$ errors of the albedo operator and hence in $O(1)$ error predictions on the reconstruction of the coefficients, which are not useful.

This paper revisit such stability estimates by introducing a more forgiving metric on the measurements errors, namely the $1-$Wasserstein distances, which penalize blurring or misalignment by an amount proportional to the width of the blurring kernel or to the amount of misalignment. We obtain new stability estimates in this setting.

We also consider the effect of errors, still measured in the $1-$ Wasserstein distance, on the generation of the probing source. This models blurring and misalignment in the design of (laser) probes and allows us to consider discretized sources. Under appropriate assumptions on the coefficients, we quantify the effect of such errors on the reconstructions.

Citation: Guillaume Bal, Alexandre Jollivet. Generalized stability estimates in inverse transport theory. Inverse Problems & Imaging, 2018, 12 (1) : 59-90. doi: 10.3934/ipi.2018003
References:
[1]

D. S. Anikonov, A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002.  Google Scholar

[2]

G. Bal, Inverse transport theory and applications, Inverse Problems, 25 (2009), 053001, 48 pp.  Google Scholar

[3]

G. Bal and A. Jollivet, Stability estimates in stationary inverse transport, Inverse Probl. Imaging, 2 (2008), 427-454.  doi: 10.3934/ipi.2008.2.427.  Google Scholar

[4]

-, Approximate stability in inverse transport, in Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems (eds. Y. Censor, M. Jiang and G. Wang), Medical Physics Publishing, Madison, WI, USA, 2009. Google Scholar

[5]

-, G. Bal, A. Jollivet, Time-dependent angularly averaged inverse transport, Inverse Problems, 25 (2009), 075010, 32 pp.  Google Scholar

[6]

-, Stability for time-dependent inverse transport, SIAM J. Math. Anal., 42 (2010), 679-700. doi: 10.1137/080734480.  Google Scholar

[7]

G. Bal, A. Jollivet and V. Jugnon, Inverse transport theory of Photoacoustics, Inverse Problems, 26 (2010), 025011, 35 pp.  Google Scholar

[8]

G. BalA. JollivetI. Langmore and F. Monard, Angular average of time-harmonic transport solutions, Comm. Partial Differential Equations, 36 (2011), 1044-1070.  doi: 10.1080/03605302.2010.540608.  Google Scholar

[9]

G. BalI. Langmore and F. Monard, Inverse transport with isotropic sources and angularly averaged measurements, Inverse Probl. Imaging, 2 (2008), 23-42.  doi: 10.3934/ipi.2008.2.23.  Google Scholar

[10]

G. Bal and A. Tamasan, Inverse source problems in transport equations, SIAM J. Math. Anal., 39 (2007), 57-76.  doi: 10.1137/050647177.  Google Scholar

[11]

A. N. Bondarenko, Singular structure of the fundamental solution of the transport equation, and inverse problems in particle scattering theory, (Russian), Dokl. Akad. Nauk SSSR, 322 (1992), 274-276; translation in Soviet Phys. Dokl. 37(1) (1992), 21-22.  Google Scholar

[12]

-, The structure of the fundamental solution of the time-independent transport equation, J. Math. Anal. Appl. , 221 (1998), 430-451. doi: 10.1006/jmaa.1997.5842.  Google Scholar

[13]

M. Choulli and P. Stefanov, Inverse scattering and inverse boundary value problems for the linear Boltzmann equation, Comm. Partial Diff. Equ., 21 (1996), 763-785.  doi: 10.1080/03605309608821207.  Google Scholar

[14]

-, An inverse boundary value problem for the stationary transport equation, Osaka J. Math., 36 (1999), 87-104.  Google Scholar

[15]

N. S. DairbekovG. P. PaternainP. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field, Adv. Math., 216 (2007), 535-609.  doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[16]

H. Egger and M. Schlottbom, An Lp theory for stationary radiative transfer, Appl. Anal., 93 (2014), 1283-1296.  doi: 10.1080/00036811.2013.826798.  Google Scholar

[17]

G. B. Folland, Lectures on Partial Differential Equations at the Tata Inst. of Bombay, Springer Verlag, Berlin, 1983.  Google Scholar

[18]

I. Langmore, The stationary transport equation with angularly averaged measurements, Inverse Problems, 24 (2008), 015024, 23 pp.  Google Scholar

[19]

I. Langmore and S. McDowall, Optical tomography for variable refractive index with angularly averaged measurements, Comm. Partial Diff. Equ., 33 (2008), 2180-2207.  doi: 10.1080/03605300802523453.  Google Scholar

[20]

E. W. Larsen, Solution to multidimensional inverse transport problems, J. Math. Phys., 25 (1984), 131-135.  doi: 10.1063/1.526007.  Google Scholar

[21]

-, Solution of three-dimensional inverse transport problems, Transport Theory Statist. Phys. , 17 (1988), 147-167. doi: 10.1080/00411458808230860.  Google Scholar

[22]

N. J. McCormick, Methods for solving inverse problems for radiation transport -an update, Transport Theory Statist. Phys., 15 (1986), 758-772.  doi: 10.1080/00411458608212714.  Google Scholar

[23]

-, Inverse radiative transfer problems: A review, Nucl. Sci. Eng., 112 (1992), 185-198. Google Scholar

[24]

S. R. McDowall, A. Tamasan and P. Stefanov, Stability of the gauge equivalent classes in stationary inverse transport,, Inverse Problems, 26 (2010), 025006, 19pp.  Google Scholar

[25]

S. G. Mikhlin and S. Prössdorf, Singular Integral Operators, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Mathematische Lehrbücher und Monographien, Ⅱ. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 68. Akademie-Verlag, Berlin, 1986. 528 pp.  Google Scholar

[26]

F. Natterer, The Mathematics of Computerized Tomography, Wiley, New York, 1986.  Google Scholar

[27]

P. Stefanov, Inverse problems in transport theory, in Inside Out: Inverse Problems and Applications (ed. G. Uhlmann), vol. 47 of MSRI publications, Cambridge University Press, Cambridge, UK, (2003), 111-131.  Google Scholar

[28]

P. Stefanov and A. Tamasan, Uniqueness and non-uniqueness in inverse radiative transfer, Proc. Amer. Math. Soc., 137 (2009), 2335-2344.  doi: 10.1090/S0002-9939-09-09839-6.  Google Scholar

[29]

P. Stefanov and G. Uhlmann, Optical tomography in two dimensions, Methods Appl. Anal., 10 (2003), 1-9.  doi: 10.4310/MAA.2003.v10.n1.a1.  Google Scholar

[30]

-, An inverse source problem in optical molecular imaging, Analysis and PDE, 1 (2008), 115-126. doi: 10.2140/apde.2008.1.115.  Google Scholar

[31]

A. Tamasan, An inverse boundary value problem in two-dimensional transport, Inverse Problems, 18 (2002), 209-219.  doi: 10.1088/0266-5611/18/1/314.  Google Scholar

[32]

C. Villani, Optimal Transport. Old and New, Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009.  Google Scholar

[33]

J.-N. Wang, Stability estimates of an inverse problem for the stationary transport equation, Ann. Inst. Henri Poincaré, 70 (1999), 473-495.   Google Scholar

show all references

References:
[1]

D. S. Anikonov, A. E. Kovtanyuk and I. V. Prokhorov, Transport Equation and Tomography, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002.  Google Scholar

[2]

G. Bal, Inverse transport theory and applications, Inverse Problems, 25 (2009), 053001, 48 pp.  Google Scholar

[3]

G. Bal and A. Jollivet, Stability estimates in stationary inverse transport, Inverse Probl. Imaging, 2 (2008), 427-454.  doi: 10.3934/ipi.2008.2.427.  Google Scholar

[4]

-, Approximate stability in inverse transport, in Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning and Inverse Problems (eds. Y. Censor, M. Jiang and G. Wang), Medical Physics Publishing, Madison, WI, USA, 2009. Google Scholar

[5]

-, G. Bal, A. Jollivet, Time-dependent angularly averaged inverse transport, Inverse Problems, 25 (2009), 075010, 32 pp.  Google Scholar

[6]

-, Stability for time-dependent inverse transport, SIAM J. Math. Anal., 42 (2010), 679-700. doi: 10.1137/080734480.  Google Scholar

[7]

G. Bal, A. Jollivet and V. Jugnon, Inverse transport theory of Photoacoustics, Inverse Problems, 26 (2010), 025011, 35 pp.  Google Scholar

[8]

G. BalA. JollivetI. Langmore and F. Monard, Angular average of time-harmonic transport solutions, Comm. Partial Differential Equations, 36 (2011), 1044-1070.  doi: 10.1080/03605302.2010.540608.  Google Scholar

[9]

G. BalI. Langmore and F. Monard, Inverse transport with isotropic sources and angularly averaged measurements, Inverse Probl. Imaging, 2 (2008), 23-42.  doi: 10.3934/ipi.2008.2.23.  Google Scholar

[10]

G. Bal and A. Tamasan, Inverse source problems in transport equations, SIAM J. Math. Anal., 39 (2007), 57-76.  doi: 10.1137/050647177.  Google Scholar

[11]

A. N. Bondarenko, Singular structure of the fundamental solution of the transport equation, and inverse problems in particle scattering theory, (Russian), Dokl. Akad. Nauk SSSR, 322 (1992), 274-276; translation in Soviet Phys. Dokl. 37(1) (1992), 21-22.  Google Scholar

[12]

-, The structure of the fundamental solution of the time-independent transport equation, J. Math. Anal. Appl. , 221 (1998), 430-451. doi: 10.1006/jmaa.1997.5842.  Google Scholar

[13]

M. Choulli and P. Stefanov, Inverse scattering and inverse boundary value problems for the linear Boltzmann equation, Comm. Partial Diff. Equ., 21 (1996), 763-785.  doi: 10.1080/03605309608821207.  Google Scholar

[14]

-, An inverse boundary value problem for the stationary transport equation, Osaka J. Math., 36 (1999), 87-104.  Google Scholar

[15]

N. S. DairbekovG. P. PaternainP. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field, Adv. Math., 216 (2007), 535-609.  doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[16]

H. Egger and M. Schlottbom, An Lp theory for stationary radiative transfer, Appl. Anal., 93 (2014), 1283-1296.  doi: 10.1080/00036811.2013.826798.  Google Scholar

[17]

G. B. Folland, Lectures on Partial Differential Equations at the Tata Inst. of Bombay, Springer Verlag, Berlin, 1983.  Google Scholar

[18]

I. Langmore, The stationary transport equation with angularly averaged measurements, Inverse Problems, 24 (2008), 015024, 23 pp.  Google Scholar

[19]

I. Langmore and S. McDowall, Optical tomography for variable refractive index with angularly averaged measurements, Comm. Partial Diff. Equ., 33 (2008), 2180-2207.  doi: 10.1080/03605300802523453.  Google Scholar

[20]

E. W. Larsen, Solution to multidimensional inverse transport problems, J. Math. Phys., 25 (1984), 131-135.  doi: 10.1063/1.526007.  Google Scholar

[21]

-, Solution of three-dimensional inverse transport problems, Transport Theory Statist. Phys. , 17 (1988), 147-167. doi: 10.1080/00411458808230860.  Google Scholar

[22]

N. J. McCormick, Methods for solving inverse problems for radiation transport -an update, Transport Theory Statist. Phys., 15 (1986), 758-772.  doi: 10.1080/00411458608212714.  Google Scholar

[23]

-, Inverse radiative transfer problems: A review, Nucl. Sci. Eng., 112 (1992), 185-198. Google Scholar

[24]

S. R. McDowall, A. Tamasan and P. Stefanov, Stability of the gauge equivalent classes in stationary inverse transport,, Inverse Problems, 26 (2010), 025006, 19pp.  Google Scholar

[25]

S. G. Mikhlin and S. Prössdorf, Singular Integral Operators, Translated from the German by Albrecht Böttcher and Reinhard Lehmann. Mathematische Lehrbücher und Monographien, Ⅱ. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 68. Akademie-Verlag, Berlin, 1986. 528 pp.  Google Scholar

[26]

F. Natterer, The Mathematics of Computerized Tomography, Wiley, New York, 1986.  Google Scholar

[27]

P. Stefanov, Inverse problems in transport theory, in Inside Out: Inverse Problems and Applications (ed. G. Uhlmann), vol. 47 of MSRI publications, Cambridge University Press, Cambridge, UK, (2003), 111-131.  Google Scholar

[28]

P. Stefanov and A. Tamasan, Uniqueness and non-uniqueness in inverse radiative transfer, Proc. Amer. Math. Soc., 137 (2009), 2335-2344.  doi: 10.1090/S0002-9939-09-09839-6.  Google Scholar

[29]

P. Stefanov and G. Uhlmann, Optical tomography in two dimensions, Methods Appl. Anal., 10 (2003), 1-9.  doi: 10.4310/MAA.2003.v10.n1.a1.  Google Scholar

[30]

-, An inverse source problem in optical molecular imaging, Analysis and PDE, 1 (2008), 115-126. doi: 10.2140/apde.2008.1.115.  Google Scholar

[31]

A. Tamasan, An inverse boundary value problem in two-dimensional transport, Inverse Problems, 18 (2002), 209-219.  doi: 10.1088/0266-5611/18/1/314.  Google Scholar

[32]

C. Villani, Optimal Transport. Old and New, Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009.  Google Scholar

[33]

J.-N. Wang, Stability estimates of an inverse problem for the stationary transport equation, Ann. Inst. Henri Poincaré, 70 (1999), 473-495.   Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[3]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[4]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[5]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[6]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[7]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[8]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[12]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[16]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[19]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[20]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (99)
  • HTML views (284)
  • Cited by (4)

Other articles
by authors

[Back to Top]