April  2018, 12(2): 281-291. doi: 10.3934/ipi.2018012

On recovery of an inhomogeneous cavity in inverse acoustic scattering

1. 

School of Mathematics and Informational Science, Yantai University, Yantai, Shandong 264005, China

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

* The corresponding author

Received  August 2016 Revised  December 2017 Published  February 2018

Fund Project: Fenglong Qu is supported by the NNSF of China under grant No. 11401513 and NSF of Shandong Province of China grant No. ZR2017MA044. Jiaqing Yang is supported by the NNSF of China under grant No. 11401568 and No. 11771349, by the China Postdoctoral Science Foundation under grant No. 2015M580827 and No. 2016T90900, and by Postdoctoral research project of Shaanxi Province of China under grant No. 2016BSHYDZZ52.

Consider the time-harmonic acoustic scattering of an incident point source inside an inhomogeneous cavity. By constructing an equivalent integral equation, the well-posedness of the direct problem is proved in $L^p$ with using the classical Fredholm theory. Motivated by the previous work [10], a novel uniqueness result is then established for the inverse problem of recovering the refractive index of piecewise constant function from the wave fields measured on a closed surface inside the cavity.

Citation: Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012
References:
[1]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[2]

F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Springer. Berlin, 2006.  Google Scholar

[3]

F. CakoniD. Colton and S. Meng, The inverse scattering problem for a penetrable cavity with internal measurements, AMS Contemp. Math., 615 (2014), 71-88.   Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.  Google Scholar

[5]

P. Jakubik and R. Potthast, Testing the integrity of some cavity-the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899-914.  doi: 10.1016/j.apnum.2007.04.007.  Google Scholar

[6]

X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18pp.  Google Scholar

[7]

S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20pp.  Google Scholar

[8]

H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17pp.  Google Scholar

[9]

H. Qin and D. Colton, The inverse scattering problem for cavities, J. Appl. Numer. Math., 62 (2015), 699-708.  doi: 10.1016/j.apnum.2010.10.011.  Google Scholar

[10]

J. Yang, H. Zhang and B. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, arXiv: 1305.0917. Google Scholar

[11]

F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17pp.  Google Scholar

show all references

References:
[1]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[2]

F. Cakoni and D. Colton, Qualitative Method in Inverse Scattering Theory, Springer. Berlin, 2006.  Google Scholar

[3]

F. CakoniD. Colton and S. Meng, The inverse scattering problem for a penetrable cavity with internal measurements, AMS Contemp. Math., 615 (2014), 71-88.   Google Scholar

[4]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977.  Google Scholar

[5]

P. Jakubik and R. Potthast, Testing the integrity of some cavity-the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899-914.  doi: 10.1016/j.apnum.2007.04.007.  Google Scholar

[6]

X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18pp.  Google Scholar

[7]

S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20pp.  Google Scholar

[8]

H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17pp.  Google Scholar

[9]

H. Qin and D. Colton, The inverse scattering problem for cavities, J. Appl. Numer. Math., 62 (2015), 699-708.  doi: 10.1016/j.apnum.2010.10.011.  Google Scholar

[10]

J. Yang, H. Zhang and B. Zhang, Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, arXiv: 1305.0917. Google Scholar

[11]

F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17pp.  Google Scholar

Figure 1.  The inhomogeneous cavity
Figure 2.  The inhomogeneous cavity
[1]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[2]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[3]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[4]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[5]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391

[9]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[10]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[11]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[12]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[13]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2739-2776. doi: 10.3934/dcds.2020384

[15]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[16]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[17]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[18]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[19]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[20]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (152)
  • HTML views (270)
  • Cited by (8)

Other articles
by authors

[Back to Top]