• Previous Article
    Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation
  • IPI Home
  • This Issue
  • Next Article
    On recovery of an inhomogeneous cavity in inverse acoustic scattering
April  2018, 12(2): 293-314. doi: 10.3934/ipi.2018013

Support theorem for the Light-Ray transform of vector fields on Minkowski spaces

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Received  October 2016 Revised  December 2017 Published  February 2018

Fund Project: Partly supported by NSF Grants DMS 1301646 and DMS 1600327.

We study the Light-Ray transform of integrating vector fields on the Minkowski time-space $\boldsymbol{{\rm R}}^{1+n}$, $n≥ 2$, with the Minkowski metric. We prove a support theorem for vector fields vanishing on an open set of light-like lines. We provide examples to illustrate the application of our results to the inverse problem for the hyperbolic Dirichlet-to-Neumann map.

Citation: Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013
References:
[1]

A. Begmatov, A certain inversion problem for the ray transform with incomplete data, Siberian Math. Journal, 42 (2001), 428-434. Google Scholar

[2]

M. Bellassoued and I. Ben Aicha, Stable determination outside a cloaking region of two timedependent coefficients in an hyperbolic equation from Dirichlet to Neumann map, Journal of Mathematical Analysis and Applications, 449 (2017), 46-76, arXiv: 1605.03466. doi: 10.1016/j.jmaa.2016.11.082. Google Scholar

[3]

M. Bellassoued and D. Dos Santos Ferreira, Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, Inverse Problem. Imaging, 5 (2011), 745-773. doi: 10.3934/ipi.2011.5.745. Google Scholar

[4]

I. Ben Aicha, Stability estimate for hyperbolic inverse problem with time dependent coefficient, Inverse Problems, 31 (2015), 125010, 21 pp, arXiv: 1506.01935. Google Scholar

[5]

J. Boman, Helgason's support theorem for Radon transforms-a new proof and a generalization, In Mathematical Methods in Tomography (Oberwolfach, 1990), volume 1497 of Lecture Notes in Math., pages 1-5. Springer, Berlin, 1991. Google Scholar

[6]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948. doi: 10.1215/S0012-7094-87-05547-5. Google Scholar

[7]

J. Boman and E. T. Quinto, Support theorems for Radon transforms on real analytic line complexes in three-space, Trans. Amer. Math. Soc., 335 (1993), 877-890. doi: 10.1090/S0002-9947-1993-1080733-8. Google Scholar

[8]

J. M. Bony, Equivalence des Diverses Notions de Spectre Singulier Analytique, Sèminaire Goulaouic-Schwartz, 1976/77, no. 3.Google Scholar

[9]

J. Bros and D. Iagolnitzer, Support Essentiel et Structure Analytique Des Distributions, Sèminaire Goulaouic-Lions-Schwartz, 1975/76, no. 18.Google Scholar

[10]

A. Denisiuk, Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve, Inverse Problems, 22 (2006), 399-411. doi: 10.1088/0266-5611/22/2/001. Google Scholar

[11]

B. FrigyikP. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108. doi: 10.1007/s12220-007-9007-6. Google Scholar

[12]

A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J., 58 (1989), 205-240. doi: 10.1215/S0012-7094-89-05811-0. Google Scholar

[13]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232. doi: 10.1016/0022-1236(90)90011-9. Google Scholar

[14]

A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry, In Integral Geometry and Tomography (Arcata, CA, 1989), volume 113 of Contemp. Math., pages 121-135. Amer. Math. Soc., Providence, RI, 1990. Google Scholar

[15]

V. Guillemin, On some results of Gel'fand in integral geometry, In Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984), volume 43 of Proc. Sympos. Pure Math., pages 149-155. Amer. Math. Soc., Providence, RI, 1985. Google Scholar

[16]

V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society, Providence, R. I., 1977. Google Scholar

[17]

S. Helgason, The Radon Transform, volume 5 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, second edition, 1999. Google Scholar

[18]

S. Holman and P. Stefanov, The weighted Doppler transform, Inverse Problem. Imaging, 4 (2010), 111-130. doi: 10.3934/ipi.2010.4.111. Google Scholar

[19]

L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math, 24 (1971), 671-704. doi: 10.1002/cpa.3160240505. Google Scholar

[20]

C. E. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math. (2), 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567. Google Scholar

[21]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equation from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046, arXiv: 1603.09600. doi: 10.1137/16M1076708. Google Scholar

[22]

V. P. Krishnan, A support theorem for the geodesic ray transform on functions, J. Fourier Anal. Appl., 15 (2009), 515-520. doi: 10.1007/s00041-009-9061-5. Google Scholar

[23]

V. P. Krishnan and P. Stefanov, A support theorem for the geodesic ray transform of symmetric tensor fields, Inverse Probl. Imaging, 3 (2009), 453-464. doi: 10.3934/ipi.2009.3.453. Google Scholar

[24]

M. Lassas, L. Oksanen, P. Stefanov and G. Uhlmann, On the inverse problem of finding cosmic strings and other topological defects, Communications in Mathematical Physics, (2017), 1-27, arXiv: 1505.03123. doi: 10.1007/s00220-017-3029-0. Google Scholar

[25]

R. B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Inverse Probl. In Spectral and scattering theory (Sanda, 1992), volume 161 of Lecture Notes in Pure and Appl. Math., pages 85-30. Dekker, New York, 1994. Google Scholar

[26]

C. Montalto, Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to Neumann map, Partial Differential Equations, 39 (2014), 120-145. doi: 10.1080/03605302.2013.843429. Google Scholar

[27]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on simple surfaces, arXiv: 1109.0505, Invent. Math., 193 (2013), 229-247. doi: 10.1007/s00222-012-0432-1. Google Scholar

[28]

L. Pestov and G. Uhlmann, Two dimensional simple compact manifolds with boundary are boundary rigid, Ann. Math., 161 (2005), 1093-1110. doi: 10.4007/annals.2005.161.1093. Google Scholar

[29]

A. Z. Petrov, Einstein Spaces. Translated from the Russian by R. F. Kelleher. Translation edited by J. Woodrow, Pergamon Press, Oxford-Edinburgh-New York, 1969. Google Scholar

[30]

E. T. Quinto, Real analytic Radon transforms on Rank one symmetric spaces, Proc. Math. Soc., 117 (1993), 179-186. doi: 10.1090/S0002-9939-1993-1135080-8. Google Scholar

[31]

A. G. Ramm, Property C and an inverse problem for a hyperbolic equation, J. Math. Anal. Appl., 156 (1991), 209-219. doi: 10.1016/0022-247X(91)90391-C. Google Scholar

[32]

A. G. Ramm and J. Sjöstrand, An inverse problem of the wave equation, Math. Z., 206 (1991), 119-130. doi: 10.1007/BF02571330. Google Scholar

[33]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015, 17pp. Google Scholar

[34]

R. Salazar, Stability estimate for the relativistic Schroedinger equation with time-dependent vector potentials, Inverse Problems, 30 (2014), 105005, 18pp. Google Scholar

[35]

M. Sato, Hyperfunctions and Partial Differential Equations, Proc. Int. Conf. Funct. Anal. Tokyo 1969, 91-4.Google Scholar

[36]

M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations. In Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Lecture Notes in Math., Springer, Berlin, 287 (1973), 265-529. Google Scholar

[37]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. Google Scholar

[38]

J. Sjöstrand, Singularités analytiques microlocales, In Astérisque, 95, Soc. Math. France, Paris, volume 95 of Astérisque, (1982), 1-166. Google Scholar

[39]

P. Stefanov, Support theorems for the light ray transform on analytic lorentzian manifolds, Proc. Amer. Math. Soc., 145 (2017), 1259-1274. Google Scholar

[40]

P. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559. doi: 10.1007/BF01215158. Google Scholar

[41]

P. Stefanov and G. Uhlmann, Microlocal Analysis and Integral Geometry, Book in Progress.Google Scholar

[42]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467. doi: 10.1215/S0012-7094-04-12332-2. Google Scholar

[43]

P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc., 18 (2005), 975-1003. doi: 10.1090/S0894-0347-05-00494-7. Google Scholar

[44]

P. Stefanov and G. Uhlmann, Integral geometry of tensor fields on a class of non-simple Riemannian manifolds, Amer. J. Math., 130 (2008), 239-268. doi: 10.1353/ajm.2008.0003. Google Scholar

[45]

P. Stefanov and G. Uhlmann, The geodesic X-ray transform with fold caustics, Anal. PDE, 5 (2012), 219-260. doi: 10.2140/apde.2012.5.219. Google Scholar

[46]

P. Stefanov and Y. Yang, The Inverse Problem for The Dirichket-to-Neumann Map on Lorentzian Manifolds, 2016.Google Scholar

[47]

F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 1. Pseudodifferential Operators, The University Series in Mathematics. Plenum Press, New York, 1980.Google Scholar

[48]

G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Inventiones Mathematicae, 205 (2016), 83-120. doi: 10.1007/s00222-015-0631-7. Google Scholar

[49]

A. Waters, Stable determination of X-Ray transforms of time dependent potentials from partial boundary data, Comm. Partial Differential Equations, 39 (2014), 2169-2197. doi: 10.1080/03605302.2014.930486. Google Scholar

[50]

A. Waters and R. Salazar, Global stability for time dependent X-ray transforms on simple manifolds and applications, arXiv: 1311.1591, 2013.Google Scholar

show all references

References:
[1]

A. Begmatov, A certain inversion problem for the ray transform with incomplete data, Siberian Math. Journal, 42 (2001), 428-434. Google Scholar

[2]

M. Bellassoued and I. Ben Aicha, Stable determination outside a cloaking region of two timedependent coefficients in an hyperbolic equation from Dirichlet to Neumann map, Journal of Mathematical Analysis and Applications, 449 (2017), 46-76, arXiv: 1605.03466. doi: 10.1016/j.jmaa.2016.11.082. Google Scholar

[3]

M. Bellassoued and D. Dos Santos Ferreira, Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map, Inverse Problem. Imaging, 5 (2011), 745-773. doi: 10.3934/ipi.2011.5.745. Google Scholar

[4]

I. Ben Aicha, Stability estimate for hyperbolic inverse problem with time dependent coefficient, Inverse Problems, 31 (2015), 125010, 21 pp, arXiv: 1506.01935. Google Scholar

[5]

J. Boman, Helgason's support theorem for Radon transforms-a new proof and a generalization, In Mathematical Methods in Tomography (Oberwolfach, 1990), volume 1497 of Lecture Notes in Math., pages 1-5. Springer, Berlin, 1991. Google Scholar

[6]

J. Boman and E. T. Quinto, Support theorems for real-analytic Radon transforms, Duke Math. J., 55 (1987), 943-948. doi: 10.1215/S0012-7094-87-05547-5. Google Scholar

[7]

J. Boman and E. T. Quinto, Support theorems for Radon transforms on real analytic line complexes in three-space, Trans. Amer. Math. Soc., 335 (1993), 877-890. doi: 10.1090/S0002-9947-1993-1080733-8. Google Scholar

[8]

J. M. Bony, Equivalence des Diverses Notions de Spectre Singulier Analytique, Sèminaire Goulaouic-Schwartz, 1976/77, no. 3.Google Scholar

[9]

J. Bros and D. Iagolnitzer, Support Essentiel et Structure Analytique Des Distributions, Sèminaire Goulaouic-Lions-Schwartz, 1975/76, no. 18.Google Scholar

[10]

A. Denisiuk, Inversion of the x-ray transform for 3D symmetric tensor fields with sources on a curve, Inverse Problems, 22 (2006), 399-411. doi: 10.1088/0266-5611/22/2/001. Google Scholar

[11]

B. FrigyikP. Stefanov and G. Uhlmann, The X-ray transform for a generic family of curves and weights, J. Geom. Anal., 18 (2008), 89-108. doi: 10.1007/s12220-007-9007-6. Google Scholar

[12]

A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J., 58 (1989), 205-240. doi: 10.1215/S0012-7094-89-05811-0. Google Scholar

[13]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232. doi: 10.1016/0022-1236(90)90011-9. Google Scholar

[14]

A. Greenleaf and G. Uhlmann, Microlocal techniques in integral geometry, In Integral Geometry and Tomography (Arcata, CA, 1989), volume 113 of Contemp. Math., pages 121-135. Amer. Math. Soc., Providence, RI, 1990. Google Scholar

[15]

V. Guillemin, On some results of Gel'fand in integral geometry, In Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984), volume 43 of Proc. Sympos. Pure Math., pages 149-155. Amer. Math. Soc., Providence, RI, 1985. Google Scholar

[16]

V. Guillemin and S. Sternberg, Geometric Asymptotics, American Mathematical Society, Providence, R. I., 1977. Google Scholar

[17]

S. Helgason, The Radon Transform, volume 5 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, second edition, 1999. Google Scholar

[18]

S. Holman and P. Stefanov, The weighted Doppler transform, Inverse Problem. Imaging, 4 (2010), 111-130. doi: 10.3934/ipi.2010.4.111. Google Scholar

[19]

L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math, 24 (1971), 671-704. doi: 10.1002/cpa.3160240505. Google Scholar

[20]

C. E. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math. (2), 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567. Google Scholar

[21]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equation from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046, arXiv: 1603.09600. doi: 10.1137/16M1076708. Google Scholar

[22]

V. P. Krishnan, A support theorem for the geodesic ray transform on functions, J. Fourier Anal. Appl., 15 (2009), 515-520. doi: 10.1007/s00041-009-9061-5. Google Scholar

[23]

V. P. Krishnan and P. Stefanov, A support theorem for the geodesic ray transform of symmetric tensor fields, Inverse Probl. Imaging, 3 (2009), 453-464. doi: 10.3934/ipi.2009.3.453. Google Scholar

[24]

M. Lassas, L. Oksanen, P. Stefanov and G. Uhlmann, On the inverse problem of finding cosmic strings and other topological defects, Communications in Mathematical Physics, (2017), 1-27, arXiv: 1505.03123. doi: 10.1007/s00220-017-3029-0. Google Scholar

[25]

R. B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Inverse Probl. In Spectral and scattering theory (Sanda, 1992), volume 161 of Lecture Notes in Pure and Appl. Math., pages 85-30. Dekker, New York, 1994. Google Scholar

[26]

C. Montalto, Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to Neumann map, Partial Differential Equations, 39 (2014), 120-145. doi: 10.1080/03605302.2013.843429. Google Scholar

[27]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on simple surfaces, arXiv: 1109.0505, Invent. Math., 193 (2013), 229-247. doi: 10.1007/s00222-012-0432-1. Google Scholar

[28]

L. Pestov and G. Uhlmann, Two dimensional simple compact manifolds with boundary are boundary rigid, Ann. Math., 161 (2005), 1093-1110. doi: 10.4007/annals.2005.161.1093. Google Scholar

[29]

A. Z. Petrov, Einstein Spaces. Translated from the Russian by R. F. Kelleher. Translation edited by J. Woodrow, Pergamon Press, Oxford-Edinburgh-New York, 1969. Google Scholar

[30]

E. T. Quinto, Real analytic Radon transforms on Rank one symmetric spaces, Proc. Math. Soc., 117 (1993), 179-186. doi: 10.1090/S0002-9939-1993-1135080-8. Google Scholar

[31]

A. G. Ramm, Property C and an inverse problem for a hyperbolic equation, J. Math. Anal. Appl., 156 (1991), 209-219. doi: 10.1016/0022-247X(91)90391-C. Google Scholar

[32]

A. G. Ramm and J. Sjöstrand, An inverse problem of the wave equation, Math. Z., 206 (1991), 119-130. doi: 10.1007/BF02571330. Google Scholar

[33]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015, 17pp. Google Scholar

[34]

R. Salazar, Stability estimate for the relativistic Schroedinger equation with time-dependent vector potentials, Inverse Problems, 30 (2014), 105005, 18pp. Google Scholar

[35]

M. Sato, Hyperfunctions and Partial Differential Equations, Proc. Int. Conf. Funct. Anal. Tokyo 1969, 91-4.Google Scholar

[36]

M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations. In Hyperfunctions and pseudo-differential equations (Proc. Conf., Katata, 1971; dedicated to the memory of André Martineau), Lecture Notes in Math., Springer, Berlin, 287 (1973), 265-529. Google Scholar

[37]

V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994. Google Scholar

[38]

J. Sjöstrand, Singularités analytiques microlocales, In Astérisque, 95, Soc. Math. France, Paris, volume 95 of Astérisque, (1982), 1-166. Google Scholar

[39]

P. Stefanov, Support theorems for the light ray transform on analytic lorentzian manifolds, Proc. Amer. Math. Soc., 145 (2017), 1259-1274. Google Scholar

[40]

P. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559. doi: 10.1007/BF01215158. Google Scholar

[41]

P. Stefanov and G. Uhlmann, Microlocal Analysis and Integral Geometry, Book in Progress.Google Scholar

[42]

P. Stefanov and G. Uhlmann, Stability estimates for the X-ray transform of tensor fields and boundary rigidity, Duke Math. J., 123 (2004), 445-467. doi: 10.1215/S0012-7094-04-12332-2. Google Scholar

[43]

P. Stefanov and G. Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc., 18 (2005), 975-1003. doi: 10.1090/S0894-0347-05-00494-7. Google Scholar

[44]

P. Stefanov and G. Uhlmann, Integral geometry of tensor fields on a class of non-simple Riemannian manifolds, Amer. J. Math., 130 (2008), 239-268. doi: 10.1353/ajm.2008.0003. Google Scholar

[45]

P. Stefanov and G. Uhlmann, The geodesic X-ray transform with fold caustics, Anal. PDE, 5 (2012), 219-260. doi: 10.2140/apde.2012.5.219. Google Scholar

[46]

P. Stefanov and Y. Yang, The Inverse Problem for The Dirichket-to-Neumann Map on Lorentzian Manifolds, 2016.Google Scholar

[47]

F. Trèves, Introduction to Pseudodifferential and Fourier Integral Operators, Vol. 1. Pseudodifferential Operators, The University Series in Mathematics. Plenum Press, New York, 1980.Google Scholar

[48]

G. Uhlmann and A. Vasy, The inverse problem for the local geodesic ray transform, Inventiones Mathematicae, 205 (2016), 83-120. doi: 10.1007/s00222-015-0631-7. Google Scholar

[49]

A. Waters, Stable determination of X-Ray transforms of time dependent potentials from partial boundary data, Comm. Partial Differential Equations, 39 (2014), 2169-2197. doi: 10.1080/03605302.2014.930486. Google Scholar

[50]

A. Waters and R. Salazar, Global stability for time dependent X-ray transforms on simple manifolds and applications, arXiv: 1311.1591, 2013.Google Scholar

Figure 1.  $\Gamma_{\rho_0}$ with $0 <c < 1$.
Figure 2.  $\Gamma_{0}$ with $0 <c <1$.
Figure 3.  $\Gamma_{0}$ with $0 <c < 1$.
[1]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[2]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[3]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[4]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[5]

David W. Pravica, Michael J. Spurr. Analytic continuation into the future. Conference Publications, 2003, 2003 (Special) : 709-716. doi: 10.3934/proc.2003.2003.709

[6]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[7]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[8]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[9]

Jerry L. Bona, Zoran Grujić, Henrik Kalisch. A KdV-type Boussinesq system: From the energy level to analytic spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1121-1139. doi: 10.3934/dcds.2010.26.1121

[10]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[11]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[12]

Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial & Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1

[13]

Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial & Management Optimization, 2008, 4 (3) : 611-616. doi: 10.3934/jimo.2008.4.611

[14]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[15]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[16]

Yuk L. Yung, Cameron Taketa, Ross Cheung, Run-Lie Shia. Infinite sum of the product of exponential and logarithmic functions, its analytic continuation, and application. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 229-248. doi: 10.3934/dcdsb.2010.13.229

[17]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[18]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[19]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[20]

Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, Vladimir A. Sharafutdinov. Momentum ray transforms. Inverse Problems & Imaging, 2019, 13 (3) : 679-701. doi: 10.3934/ipi.2019031

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (36)
  • HTML views (149)
  • Cited by (0)

Other articles
by authors

[Back to Top]