|
L. Ambrosio
, Variational problems in SBV and image segmentation, Acta Appl. Math., 17 (1989)
, 1-40.
doi: 10.1007/BF00052492.
|
|
L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, 2000.
|
|
L. Ambrosio
and V. M. Tortorelli
, Approximation of functional depending on jumps by elliptic functional via Γ-convergence, Commun. Pur. Appl. Math., 43 (1990)
, 999-1036.
doi: 10.1002/cpa.3160430805.
|
|
L. Bar
, N. Sochen
and N. Kiryati
, Semi-blind image restoration via Mumford-Shah regularization, IEEE Trans. Image Process., 15 (2006)
, 483-493.
doi: 10.1109/TIP.2005.863120.
|
|
D. P. Bertsekas,
Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 1982.
|
|
D. P. Bertsekas, A. Nedi and A. E. Ozdaglar,
Convex Analysis and Optimization, Athena Scientific, 2003.
|
|
A. Blake and A. Zisserman,
Visual Reconstruction, MIT press Cambridge, 1987.
|
|
Y. Boykov
, O. Veksler
and R. Zabih
, Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell., 23 (2001)
, 1222-1239.
doi: 10.1109/ICCV.1999.791245.
|
|
A. Braides,
Gamma-convergence for Beginners, Oxford University Press, 2002.
|
|
A. Chambolle
, Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations, SIAM J. Appl. Math., 55 (1995)
, 827-863.
doi: 10.1137/S0036139993257132.
|
|
T. F. Chan
and L. Vese
, Active contours without edges, IEEE Trans. Image Process., 10 (2001)
, 266-277.
doi: 10.1109/83.902291.
|
|
G. Dal Maso
, G. A. Francfort
and R. Toader
, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005)
, 165-225.
doi: 10.1007/s00205-004-0351-4.
|
|
E. De Giorgi
, M. Carriero
and A. Leaci
, Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., 108 (1989)
, 195-218.
doi: 10.1007/BF01052971.
|
|
S. Esedoglu
and J. Shen
, Digital inpainting based on the Mumford-Shah-Euler image model, Eur. J. Appl. Math., 13 (2002)
, 353-370.
|
|
A. Faridani
, E. L. Ritman
and K. T. Smith
, Local tomography, SIAM J. Appl. Math., 52 (1992)
, 459-484.
doi: 10.1137/0152026.
|
|
M. Fornasier
and R. Ward
, Iterative thresholding meets free-discontinuity problems, Found. Comput. Math., 10 (2010)
, 527-567.
doi: 10.1007/s10208-010-9071-3.
|
|
T. Goldstein
and S. Osher
, The split bregman method for l1-regularized problems, SIAM J. Imaging Sci., 2 (2009)
, 323-343.
doi: 10.1137/080725891.
|
|
C. Hamaker
, K. Smith
, D. Solmon
and S. Wagner
, The divergent beam X-ray transform, Rocky Mt. J. Math., 10 (1980)
, 253-283.
doi: 10.1216/RMJ-1980-10-1-253.
|
|
K. Hohm
, M. Storath
and A. Weinmann
, An algorithmic framework for Mumford-Shah regularization of inverse problems in imaging, Inverse Problems, 31 (2015)
, 115011-30pp.
|
|
M. Jiang
, P. Maass
and T. Page
, Regularizing properties of the Mumford-Shah functional for imaging applications, Inverse Problems, 30 (2014)
, 035007-17pp.
|
|
Y. Kee
and J. Kim
, A convex relaxation of the Ambrosio-Tortorelli elliptic functionals for the Mumford-Shah functional, in CVPR, (2014)
, 4074-4081.
doi: 10.1109/CVPR.2014.519.
|
|
E. Klann
, A Mumford-Shah-like method for limited data tomography with an application to electron tomography, SIAM J. Imaging Sci., 4 (2011)
, 1029-1048.
doi: 10.1137/100817371.
|
|
E. Klann
and R. Ramlau
, Regularization properties of Mumford-Shah-type functionals with perimeter and norm constraints for linear ill-posed problems, SIAM J. Imaging Sci., 6 (2013)
, 413-436.
doi: 10.1137/110858422.
|
|
H. Kudo
, M. Courdurier
, F. Noo
and M. Defrise
, Tiny a priori knowledge solves the interior problem in computed tomography, Phys. Med. Biol., 53 (2008)
, 2207-2231.
|
|
A. K. Louis
and A. Rieder
, Incomplete data problems in X-ray computerized tomography, Numer. Math., 56 (1989)
, 371-383.
doi: 10.1007/BF01396611.
|
|
P. Maass
, The interior Radon transform, SIAM J. Appl. Math., 52 (1992)
, 710-724.
doi: 10.1137/0152040.
|
|
D. Mumford
and J. Shah
, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pur. Appl. Math., 42 (1989)
, 577-685.
doi: 10.1002/cpa.3160420503.
|
|
F. Natterer,
The Mathematics of Computerized Tomography, SIAM, 2001.
|
|
Y. Nesterov,
Introductory Lectures on Convex Optimization: A Basic Course, vol. 87, Springer, 2004.
|
|
T. Page, Simultaneous reconstruction and segmentation with the Mumford-Shah functional for X-ray tomography, master's thesis, Diplomarbeit University of Bremen, 2011.
|
|
T. Pock
, A. Chambolle
, D. Cremers
and H. Bischof
, A convex relaxation approach for computing minimal partitions, in CVPR, (2009)
, 810-817.
doi: 10.1109/CVPR.2009.5206604.
|
|
E. T. Quinto
, Singularities of the X-ray transform and limited data tomography in $\mathbb{R}^2$ and $\mathbb{R}^3$, SIAM J. Math. Anal., 24 (1993)
, 1215-1225.
doi: 10.1137/0524069.
|
|
R. Ramlau
and W. Ring
, A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data, J. Comput. Phys., 221 (2007)
, 539-557.
doi: 10.1016/j.jcp.2006.06.041.
|
|
L. Rondi
and F. Santosa
, Enhanced electrical impedance tomography via the Mumford-Shah functional, ESAIM: Control, Optimisation and Calculus of Variations, 6 (2001)
, 517-538.
doi: 10.1051/cocv:2001121.
|
|
L. I. Rudin
, S. Osher
and E. Fatemi
, Nonlinear total variation based noise removal algorithms, Physica D., 60 (1992)
, 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
|
J. Shah
, A common framework for curve evolution, segmentation and anisotropic diffusion, in CVPR, (1996)
, 136-142.
doi: 10.1109/CVPR.1996.517065.
|
|
E. Y. Sidky, J. H. Jørgensen and X. Pan, Convex optimization problem prototyping with the Chambolle-Pock algorithm for image reconstruction in computed tomography Physics in Medicine & Biology, 57 (2012), arXiv: 1111.5632.
doi: 10.1088/0031-9155/57/10/3065.
|
|
C. R. Vogel
, A multigrid method for total variation-based image denoising, in Computation and control Ⅳ, Springer, 20 (1995)
, 323-331.
|
|
G. Wang
and M. Jiang
, Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART), Journal of X-ray Science and Technology, 12 (2003)
, 957-961.
doi: 10.1109/TIP.2003.815295.
|
|
J. Yang, H. Yu, M. Jiang and G. Wang, High-order total variation minimization for interior tomography,
Inverse Problems, 26 (2010), 035013, 29pp.
|
|
Y. Ye, H. Yu, Y. Wei and G. Wang, A general local reconstruction approach based on a truncated Hilbert transform Int. J. Biomed. Imaging, 2007 (2007), Article ID 63634, 8 pages.
doi: 10.1155/2007/63634.
|
|
H. Yu
and G. Wang
, Compressed sensing based interior tomography, Phys. Med. Biol., 54 (2009)
, 2791-2805.
|
|
H. Yu, J. Yang, M. Jiang and G. Wang, Supplemental analysis on compressed sensing based interior tomography Phys. Med. Biol. , 54 (2009), N425.
doi: 10.1088/0031-9155/54/18/N04.
|
|
H. Yu, Y. Ye, S. Zhao and G. Wang, Local ROI reconstruction via generalized FBP and BPF algorithms along more flexible curves Int. J. Biomed. Imaging, 2006 (2006), Article ID 14989, 7 pages.
doi: 10.1155/IJBI/2006/14989.
|
|
Z. Zhao
, J. Yang
and M. Jiang
, A fast algorithm for high order total variation minimization based interior tomography, J. X-ray Sci. Technol., 23 (2015)
, 349-364.
doi: 10.3233/XST-150494.
|
|
Y. Zhu
, M. Zhao
and Y. Zhao
, Noise reduction with low dose CT data based on a modified ROF model, Optics express, 20 (2012)
, 17987-18004.
doi: 10.1364/OE.20.017987.
|