|
G. Barles
and P. E. Souganidis
, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991)
, 271-283.
|
|
J. -D. Benamou, Y. Brenier and K. Guittet, The Monge-Kantorovitch mass transfer and its
computational fluid mechanics formulation, Internat. J. Numer. Methods Fluids, 40 (2002),
21-30, ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001).
doi: 10.1002/fld.264.
|
|
J.-D. Benamou
, B. D. Froese
and A. M. Oberman
, Two numerical methods for the elliptic Monge-Ampère equation, M2AN Math. Model. Numer. Anal., 44 (2010)
, 737-758.
doi: 10.1051/m2an/2010017.
|
|
K. Böhmer
, On finite element methods for fully nonlinear elliptic equations of second order, SIAM J. Numer. Anal., 46 (2008)
, 1212-1249.
doi: 10.1137/040621740.
|
|
S. C. Brenner
, T. Gudi
, M. Neilan
and L.-y. Sung
, $C^0$ penalty methods for the fully nonlinear Monge-Ampère equation, Math. Comp., 80 (2011)
, 1979-1995.
doi: 10.1090/S0025-5718-2011-02487-7.
|
|
C. Broit, Optimal registration of deformed images.
|
|
L. G. Brown
, A survey of image registration techniques, ACM Computing Surveys (CSUR), 24 (1992)
, 325-376.
doi: 10.1145/146370.146374.
|
|
P. A. Browne
, C. J. Budd
, C. Piccolo
and M. Cullen
, Fast three dimensional r-adaptive mesh redistribution, J. Comput. Phys., 275 (2014)
, 174-196.
doi: 10.1016/j.jcp.2014.06.009.
|
|
C. J. Budd
and J. F. Williams
, Moving mesh generation using the parabolic Monge-Ampère equation, SIAM J. Sci. Comput., 31 (2009)
, 3438-3465.
doi: 10.1137/080716773.
|
|
L. A. Caffarelli
, Boundary regularity of maps with convex potentials. II, Ann. of Math., 144 (1996)
, 453-496.
doi: 10.2307/2118564.
|
|
K. Y. Chan and J. W. Wan, Reconstruction of missing cells by a killing energy minimizing
nonrigid image registration, in Engineering in Medicine and Biology Society (EMBC), 2013
35th Annual International Conference of the IEEE, IEEE, 2013,3000-3003.
doi: 10.1109/EMBC.2013.6610171.
|
|
R. Chartrand
, B. Wohlberg
, K. R. Vixie
and E. M. Bollt
, A gradient descent solution to the Monge-{K}antorovich problem, Appl. Math. Sci. (Ruse), 3 (2009)
, 1071-1080.
|
|
Y. Chen and J. W. Wan, Monotone mixed narrow/wide stencil finite difference scheme for Monge-Ampère equation, arXiv preprint, arXiv: 1608.00644.
|
|
G. E. Christensen,
Deformable Shape Models for Anatomy, PhD thesis, Washington University Saint Louis, Mississippi, 1994.
|
|
M. G. Crandall
, H. Ishii
and P.-L. Lions
, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992)
, 1-67.
doi: 10.1090/S0273-0979-1992-00266-5.
|
|
M. G. Crandall
and P.-L. Lions
, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983)
, 1-42.
doi: 10.1090/S0002-9947-1983-0690039-8.
|
|
E. J. Dean
and R. Glowinski
, Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type, Comput. Methods Appl. Mech. Engrg., 195 (2006)
, 1344-1386.
doi: 10.1016/j.cma.2005.05.023.
|
|
P. Dupuis
, U. Grenander
and M. I. Miller
, Variational problems on flows of diffeomorphisms for image matching, Quarterly of Applied Mathematics, 56 (1998)
, 587-600.
doi: 10.1090/qam/1632326.
|
|
X. Feng
, R. Glowinski
and M. Neilan
, Recent developments in numerical methods for fully nonlinear second order partial differential equations, SIAM Rev., 55 (2013)
, 205-267.
doi: 10.1137/110825960.
|
|
X. Feng
and M. Neilan
, Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations, J. Sci. Comput., 38 (2009)
, 74-98.
doi: 10.1007/s10915-008-9221-9.
|
|
B. Fischer
and J. Modersitzki
, Fast inversion of matrices arising in image processing, Numerical Algorithms, 22 (1999)
, 1-11.
doi: 10.1023/A:1019194421221.
|
|
P. A. Forsyth and G. Labahn, Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance,
Journal of Computational Finance, 11 (2007), 1pp.
doi: 10.21314/JCF.2007.163.
|
|
B. D. Froese
, A numerical method for the elliptic Monge-Ampère equation with transport boundary conditions, SIAM J. Sci. Comput., 34 (2012)
, A1432-A1459.
doi: 10.1137/110822372.
|
|
B. D. Froese
and A. M. Oberman
, Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher, SIAM J. Numer. Anal., 49 (2011)
, 1692-1714.
doi: 10.1137/100803092.
|
|
S. K. Godunov
, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb. (N.S.), 47 (1959)
, 271-306.
|
|
A. A. Goshtasby,
2-D and 3-D Image Registration: For Medical, Remote Sensing, and Industrial Applications, John Wiley & Sons, 2005.
|
|
S. Haker and A. Tannenbaum, Optimal mass transport and image registration, in Variational
and Level Set Methods in Computer Vision, 2001. Proceedings. IEEE Workshop on, IEEE,
2001, 29-36.
doi: 10.1109/VLSM.2001.938878.
|
|
S. Haker
, L. Zhu
, A. Tannenbaum
and S. Angenent
, Optimal mass transport for registration and warping, International Journal of Computer Vision, 60 (2004)
, 225-240.
doi: 10.1023/B:VISI.0000036836.66311.97.
|
|
D. L. Hill, P. G. Batchelor, M. Holden and D. J. Hawkes, Medical image registration,
Physics in Medicine and Biology, 46 (2001), R1.
doi: 10.1088/0031-9155/46/3/201.
|
|
M. Irani
and S. Peleg
, Improving resolution by image registration, CVGIP: Graphical Models and Image Processing, 53 (1991)
, 231-239.
doi: 10.1016/1049-9652(91)90045-L.
|
|
M. Knott
and C. S. Smith
, On the optimal mapping of distributions, Journal of Optimization Theory and Applications, 43 (1984)
, 39-49.
doi: 10.1007/BF00934745.
|
|
N. V. Krylov
, The control of the solution of a stochastic integral equation, Teor. Verojatnost. i Primenen., 17 (1972)
, 111-128.
|
|
K. Levenberg
, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math., 2 (1944)
, 164-168.
doi: 10.1090/qam/10666.
|
|
P. -L. Lions, Hamilton-Jacobi-Bellman equations and the optimal control of stochastic systems,
in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983),
PWN, Warsaw, 1984,1403-1417.
|
|
J. A. Maintz
and M. A. Viergever
, A survey of medical image registration, Medical Image Analysis, 2 (1998)
, 1-36.
doi: 10.1016/S1361-8415(01)80026-8.
|
|
D. W. Marquardt
, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11 (1963)
, 431-441.
doi: 10.1137/0111030.
|
|
J. Modersitzki,
Numerical Methods for Image Registration, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004, Oxford Science Publications.
|
|
J. Modersitzki,
FAIR: Flexible Algorithms for Image Registration, vol. 6 of Fundamentals of Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009.
doi: 10.1137/1.9780898718843.
|
|
O. Museyko
, M. Stiglmayr
, K. Klamroth
and G. Leugering
, On the application of the Monge-Kantorovich problem to image registration, SIAM J. Imaging Sci., 2 (2009)
, 1068-1097.
doi: 10.1137/080721522.
|
|
A. M. Oberman
, Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008)
, 221-238.
doi: 10.3934/dcdsb.2008.10.221.
|
|
V. I. Oliker
and L. D. Prussner
, On the numerical solution of the equation $(\partial^ 2z/\partial x^ 2)(\partial^ 2z/\partial y^ 2)-((\partial^ 2z/\partial x\partial y))^ 2 = f$ and its discretizations. Ⅰ, Numer. Math., 54 (1988)
, 271-293.
doi: 10.1007/BF01396762.
|
|
S. Osher
and C.-W. Shu
, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28 (1991)
, 907-922.
doi: 10.1137/0728049.
|
|
K. Rohr,
Landmark-based Image Analysis: Using Geometric and Intensity Models, vol. 21, Springer Science & Business Media, 2001.
doi: 10.1007/978-94-015-9787-6.
|
|
L.-P. Saumier
, M. Agueh
and B. Khouider
, An efficient numerical algorithm for the $L^ 2$
optimal transport problem with periodic densities, IMA J. Appl. Math., 80 (2015)
, 135-157.
doi: 10.1093/imamat/hxt032.
|
|
A. Sotiras
, C. Davatzikos
and N. Paragios
, Deformable medical image registration: A survey, IEEE Transactions on Medical Imaging, 32 (2013)
, 1153-1190.
doi: 10.1109/TMI.2013.2265603.
|
|
P. Thevenaz
, U. E. Ruttimann
and M. Unser
, A pyramid approach to subpixel registration based on intensity, IEEE Transactions on Image Processing, 7 (1998)
, 27-41.
doi: 10.1109/83.650848.
|
|
J.-P. Thirion
, Image matching as a diffusion process: An analogy with maxwell's demons, Medical Image Analysis, 2 (1998)
, 243-260.
doi: 10.1016/S1361-8415(98)80022-4.
|
|
E. F. Toro,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Third edition. Springer-Verlag, Berlin, 2009.
|
|
U. Trottenberg, C. W. Oosterlee and A. Schüller,
Multigrid, Academic Press, Inc., San Diego, CA, 2001, With contributions by A. Brandt, P. Oswald and K. Stüben.
|
|
A. Trouvé
, Diffeomorphisms groups and pattern matching in image analysis, International Journal of Computer Vision, 28 (1998)
, 213-221.
|
|
P. Viola
and W. M. Wells Ⅲ
, Alignment by maximization of mutual information, International Journal of Computer Vision, 24 (1997)
, 137-154.
|