Advanced Search
Article Contents
Article Contents

Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms

The author is supported by NSF grant DMS-1712790

Abstract / Introduction Full Text(HTML) Figure(1) Related Papers Cited by
  • This article extends the author's past work [11] to attenuated X-ray transforms, where the attenuation is complex-valued and only depends on position. We give a positive and constructive answer to the attenuated tensor tomography problem on the Euclidean unit disc in fan-beam coordinates. For a tensor of arbitrary order, we propose an equivalent tensor of the same order which can be uniquely and stably reconstructed from its attenuated transform, as well as an explicit and efficient procedure to do so.

    Mathematics Subject Classification: Primary: 35R30, 44A12; Secondary: 30E20, 92C55, 58J32.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Fan-beam coordinates, scattering relation $\mathcal{S}$ and antipodal scattering relation ${{\mathcal{S}}_{A}}$

  •   G. Ainsworth , The attenuated magnetic ray transform on surfaces, Inverse Problems and Imaging, 7 (2013) , 27-46. 
      E. V. Arbuzov , A. L. Bukhgeim  and  S. G. Kazantsev , Two-dimensional tomography problems and the theory of A-analytic functions, Siberian Advances in Mathematics, 8 (1998) , 1-20. 
      Y. M. Assylbekov, F. Monard and G. Uhlmann, Inversion formulas and range characterizations for the attenuated geodesic ray transform, Journal de Mathématiques Pures et Appliquées (to appear), arXiv: 1609.04361.
      G. Bal , On the attenuated radon transform with full and partial measurements, Inverse Problems, 20 (2004) , 399-418. 
      G. Bal  and  A. Tamasan , Inverse source problem in transport equations, SIAM J. Math. Anal., 39 (2007) , 57-76. 
      J. Boman  and  J.-O. Strömberg , Novikov's inversion formula for the attenuated radon transform--a new approach, J. Geom. Anal., 14 (2004) , 185-198. 
      D. Finch, The attenuated X-ray transform: Recent developments, Inside Out, Inverse Problems and Applications, 47-66, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, 2003.
      S. Holman  and  P. Stefanov , The weighted doppler transform, Inverse Problems and Imaging, 4 (2010) , 111-130. 
      S. G. Kazantsev  and  A. A. Bukhgeim , Inversion of the scalar and vector attenuated x-ray transforms in a unit disc, J. Inv. Ill-Posed Problems, 15 (2007) , 735-765. 
      S. G. Kazantsev  and  A. A. Bukhgeim , Singular value decomposition for the 2d fan-beam radon transform of tensor fields, Journal of Inverse and Ill-posed Problems, 12 (2004) , 245-278. 
      F. Monard , Efficient tensor tomography in fan-beam coordinates, Inverse Probl. Imaging, 10 (2016) , 433-459. 
      F. Monard , Inversion of the attenuated geodesic X-ray transform over functions and vector fields on simple surfaces, SIAM J. Math. Anal., 48 (2016) , 1155-1177. 
      F. Monard and G. P. Paternain, The geodesic X-ray transform with a $GL(n, \mathbb{C})$ -connection, to appear in Journal of Geometric Analysis, arXiv: 1610.09571.
      F. Natterer , Inversion of the attenuated radon transform, Inverse Problems, 17 (2001) , 113-119. 
      F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001.
      R. G. Novikov, An inversion formula for the attenuated x-ray transformation, Ark. Math., 40 (2002), 145-167, (Rapport de recherche 00/05-3 Université de Nantes, Laboratoire de Mathématiques).
      G. Paternain, Inside Out II, chapter Inverse problems for connections, 2012.
      G. Paternain , M. Salo  and  G. Uhlmann , The attenuated ray transform for connections and higgs fields, Geom. Funct. Anal. (GAFA), 22 (2012) , 1460-1489. 
      G. Paternain , M. Salo  and  G. Uhlmann , Tensor tomography on surfaces, Inventiones Math., 193 (2013) , 229-247. 
      G. P. Paternain , M. Salo  and  G. Uhlmann , Spectral rigidity and invariant distributions on anosov surfaces, Journal of Differential Geometry, 98 (2014) , 147-181.  doi: 10.4310/jdg/1406137697.
      G. P. Paternain , M. Salo  and  G. Uhlmann , Invariant distributions, Beurling transforms and tensor tomography in higher dimensions, Mathematische Annalen, 363 (2015) , 305-362.  doi: 10.1007/s00208-015-1169-0.
      G. P. Paternain  and  H. Zhou , Invariant distributions and the geodesic ray transform, Analysis & PDE, 9 (2016) , 1903-1930.  doi: 10.2140/apde.2016.9.1903.
      L. Pestov  and  G. Uhlmann , On the characterization of the range and inversion formulas for the geodesic X-ray transform, International Math. Research Notices, 80 (2004) , 4331-4347. 
      L. Pestov  and  G. Uhlmann , Two-dimensional compact simple Riemannian manifolds are boundary distance rigid, Annals of Mathematics, 161 (2005) , 1093-1110.  doi: 10.4007/annals.2005.161.1093.
      K. Sadiq , O. Scherzer  and  A. Tamasan , On the x-ray transform of planar symmetric 2-tensors, Journal of Mathematical Analysis and Applications, 442 (2016) , 31-49.  doi: 10.1016/j.jmaa.2016.04.018.
      K. Sadiq  and  A. Tamasan , On the range characterization of the two-dimensional attenuated doppler transform, SIAM Journal on Mathematical Analysis, 47 (2015) , 2001-2021.  doi: 10.1137/140984282.
      K. Sadiq  and  A. Tamasan , On the range of the attenuated radon transform in strictly convex sets, Transactions of the American Mathematical Society, 367 (2015) , 5375-5398. 
      M. Salo  and  G. Uhlmann , The Attenuated Ray Transform on Simple Surfaces, J. Diff. Geom., 88 (2011) , 161-187.  doi: 10.4310/jdg/1317758872.
      V. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994.
      G. Sparr , K. Strahlen , K. Lindstrom  and  H. Persson , Doppler tomography for vector fields, Inverse Problems, 11 (1995) , 1051-1061.  doi: 10.1088/0266-5611/11/5/009.
      P. Stefanov  and  G. Uhlmann , An inverse source problem in optical molecular imaging, Analysis & PDE, 1 (2008) , 115-126.  doi: 10.2140/apde.2008.1.115.
      E. M. Stein and R. Shakarchi, Real Analysis. Measure Theory, Integration and Hilbert Spaces, Princeton University Press, 2005.
      W. A. Strauss, Partial Differential Equations, Second edition. John Wiley & Sons, Ltd., Chichester, 2008.
      A. Tamasan , Tomographic reconstruction of vector fields in variable background media, Inverse Problems, 23 (2007) , 2197-2205.  doi: 10.1088/0266-5611/23/5/022.
      H. Zhou , Generic injectivity and stability of inverse problems for connections, Communications in Partial Differential Equations, 42 (2017) , 780-801.  doi: 10.1080/03605302.2017.1295061.
  • 加载中



Article Metrics

HTML views(1663) PDF downloads(209) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint