|
A. D. Agaltsov and R. Novikov, Riemann-Hilbert approach for two-dimensional flow inverse scattering,
J. Math. Phys, 55 (2014), 103502, 25pp.
|
|
H. Ammari
, Y. Chow
and J. Zou
, Phased and phaseless domain reconstructions in the inverse scattering problem via scattering coefficients, SIAM J. Appl. Math., 76 (2016)
, 1000-1030.
doi: 10.1137/15M1043959.
|
|
H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities From Boundary Measurements, vol. 1846 of Lecture Notes in Mathematics, Springer, 2004.
|
|
A. B. Bakushinsii and M. Y. Kokurin, Iterative Methods for Approximate Solutions of Inverse Problems, Springer, New York, 2004.
|
|
L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York, 2012.
doi: 10.1007/978-1-4419-7805-9.
|
|
L. Beilina
and M. V. Klibanov
, A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data, J. Inverse and Ill-Posed Problems, 20 (2012)
, 513-565.
|
|
M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Third revised edition, Pergamon Press, Oxford-New York-Paris, 1965.
|
|
A. L. Bukhgeim
and M. V. Klibanov
, Uniqueness in the large of a class of multidimensional inverse problems, Soviet Math. Doklady, 17 (1981)
, 244-247.
|
|
M. Burger
and S. Osher
, A survey on level set methods for inverse problems and optimal design, European J. of Appl. Math., 16 (2005)
, 263-301.
doi: 10.1017/S0956792505006182.
|
|
G. Chavent, Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications, Scientic Computation, Springer, New York, 2009.
|
|
Y. Chow
and J. Zou
, A numerical method for reconstructing the coefficient in a wave equation, Numerical Methods for PDEs, 31 (2015)
, 289-307.
doi: 10.1002/num.21904.
|
|
D. Colton
and A. Kirsch
, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996)
, 383-393.
doi: 10.1088/0266-5611/12/4/003.
|
|
D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Second ed., Applied Mathematical Sciences, Springer-Verlag, Berlin, 1998.
|
|
M. de Buhan and M. Kray, A new approach to solve the inverse scattering problem for waves: Combining the TRAC and the Adaptive Inversion methods, Inverse Problems, 29 (2013), 085009, 24pp.
|
|
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996.
|
|
N. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin Heidelberg New York, 1977.
|
|
A. V. Goncharsky and S. Y. Romanov, Supercomputer technologies in inverse problems of ultrasound tomography, Inverse Problems, 29(2013), 075004, 22pp.
|
|
F. Hecht
, New development in FreeF em++, J. Numerical Mathematics, 20 (2012)
, 251-265.
|
|
K. Ito, B. Jin and J. Zou, A direct sampling method for an inverse medium scattering problem, Inverse Problems, 28 (2012), 025003, 11pp.
|
|
K. Ito, B. Jin and J. Zou, A direct sampling method for inverse electromagnetic medium scattering, Inverse Problems, 29 (2013), 095018, 19pp.
|
|
S. I. Kabanikhin
, K. K. Sabelfeld
, N. Novikov
and M. A. Shishlenin
, Numerical solution of the multidimensional G elfand-Levitan equation, J. Inverse and Ill-Posed Problems, 23 (2015)
, 439-450.
|
|
A. Kirsch
, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998)
, 1489-1512.
doi: 10.1088/0266-5611/14/6/009.
|
|
M. V. Klibanov
, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse and Ill-Posed Problems, 21 (2013)
, 477-560.
|
|
M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong and J. Schenk, Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem, Inverse Problems, 26 (2010), 045003, 30pp.
|
|
M. V. Klibanov
, L. H. Nguyen
, A. Sullivan
and L. Nguyen
, A globally convergent numerical method for a 1-D inverse medium problem with experimental data, Inverse Problems and Imaging, 10 (2016)
, 1057-1085.
doi: 10.3934/ipi.2016032.
|
|
M. V. Klibanov and V. G. Romanov, Two reconsrtuction procedures for a 3-D phaseless inverse scattering problem for the generalized Helmholtz equation, Inverse Problems, 32 (2016), 015005, 16pp.
|
|
A. Kolesov
, M. V. Klibanov
, L. H. Nguyen
, D.-L. Nguyen
and N. T. Thành
, Single measurement experimental data for an inverse medium problem inverted by a multi-frequency globally convergent numerical method, Applied Numerical Mathematics, 120 (2017)
, 176-196.
doi: 10.1016/j.apnum.2017.05.007.
|
|
A. V. Kuzhuget
, L. Beilina
, M. V. Klibanov
, A. Sullivan
, L. Nguyen
and M. A. Fiddy
, Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm, Inverse Problems, 28 (2012)
, 095007.
doi: 10.1088/0266-5611/28/9/095007.
|
|
O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
|
|
A. Lechleiter
and D.-L. Nguyen
, A trigonometric Galerkin method for volume integral equations arising in TM grating scattering, Adv. Comput. Math., 40 (2014)
, 1-25.
doi: 10.1007/s10444-013-9295-2.
|
|
J. Li
, H. Liu
and J. Zou
, Locating multiple multiscale acoustic scatterers, Multiscale Model. Simul., 12 (2014)
, 927-952.
doi: 10.1137/13093409X.
|
|
J. Li
, H. Liu
and Q. Wang
, Enhanced multilevel linear sampling methods for inverse scattering problems, J. Comput. Phys., 257 (2014)
, 554-571.
doi: 10.1016/j.jcp.2013.09.048.
|
|
D. -L. Nguyen, M. V. Klibanov, L. H. Nguyen and M. A. Fiddy, Imaging of buried objects from multi-frequency experimental data using a globally convergent inversion method, To appear on Journal of Inverse and Ill-Posed Problems.
|
|
D.-L. Nguyen
, M. V. Klibanov
, L. Nguyen
, A. E. Kolesov
, M. A. Fiddy
and H. Liu
, Numerical solution for a coefficient inverse problem with multi-frequency experimental raw data by a globally convergent algorithm, Journal of Computational Physics, 345 (2017)
, 17-32.
doi: 10.1016/j.jcp.2017.05.015.
|
|
R. G. Novikov
, A multidimensional inverse spectral problem for the equation $-\Delta \psi +(v(x)-Eu(x))\psi = 0$, Funct. Anal. Appl., 22 (1988)
, 263-272.
|
|
R. G. Novikov
, The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator, J. Functional Analysis, 103 (1992)
, 409-463.
doi: 10.1016/0022-1236(92)90127-5.
|
|
R. G. Novikov
, An iterative approach to non-overdetermined inverse scattering at fixed energy, Sbornik: Mathematics, 206 (2015)
, 120-134.
|
|
L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd edition, Cambridge University Press, Cambridge, UK, 2012.
|
|
V. G. Romanov, Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987.
|
|
V. G. Romanov
, Inverse problems for differential equations with memory, Eurasian J. Math. Comput. Appl., 2 (2014)
, 51-80.
|
|
J. A. Scales
, M. L. Smith
and T. L. Fischer
, Global optimization methods for multimodal inverse problems, J. Computational Physics, 103 (1992)
, 258-268.
|
|
M. Soumekh, Syntetic Aperture Radar Signal Processing, John Wiley&Sons, New York, 1999.
|
|
N. T. Thành
, L. Bellina
, M. V. Klibanov
and M. A. Fiddy
, Imaging of buried objects from experimental backscattering time dependent measurements using a globally convergent inverse algorithm, SIAM J. Imaging Sciences, 8 (2014)
, 757-786.
doi: 10.1137/140972469.
|
|
N. T. Thành
, L. Bellina
, M. V. Klibanov
and M. A. Fiddy
, Reconstruction of the refractive index from experimental backscattering data using a globally convergent inverse method, SIAM J. Sci. Comput., 36 (2014)
, B273-B293.
doi: 10.1137/130924962.
|
|
A. N. Tikhonov, A. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Kluwer Academic Publishers Group, Dordrecht, 1995.
|
|
B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics, New York, Gordon and Breach Science Publishers, 1989.
|
|
G. Vainikko, Fast solvers of the L ippmann-Schwinger equation, in Direct and Inverse Problems of Mathematical Physics (ed. D. Newark), Int. Soc. Anal. Appl. Comput. 5, Kluwer,
Dordrecht, 2000,423-440.
|
|
M. Yamamoto, Carleman estimates for parabolic equations. Topical Review, Inverse Problems, 25 (2009), 123013, 75pp.
|