April  2018, 12(2): 525-526. doi: 10.3934/ipi.2018022

A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes"

1. 

Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany

2. 

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Received  December 2017 Published  February 2018

This note addresses an error in [1].

Citation: Nils Dabrock, Yves van Gennip. A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes". Inverse Problems and Imaging, 2018, 12 (2) : 525-526. doi: 10.3934/ipi.2018022
References:
[1]

R. ChoksiY. van Gennip and A. Oberman, Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes, Inverse Probl. Imaging, 5 (2011), 591-617.  doi: 10.3934/ipi.2011.5.591.

[2]

N. Dabrock, Characterization of minimizers of an anisotropic variant of the Rudin-Osher-Fatemi functional with $L^1$ fidelity term, arXiv preprint, arXiv: 1704.00451

show all references

References:
[1]

R. ChoksiY. van Gennip and A. Oberman, Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes, Inverse Probl. Imaging, 5 (2011), 591-617.  doi: 10.3934/ipi.2011.5.591.

[2]

N. Dabrock, Characterization of minimizers of an anisotropic variant of the Rudin-Osher-Fatemi functional with $L^1$ fidelity term, arXiv preprint, arXiv: 1704.00451

[1]

Rustum Choksi, Yves van Gennip, Adam Oberman. Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes. Inverse Problems and Imaging, 2011, 5 (3) : 591-617. doi: 10.3934/ipi.2011.5.591

[2]

Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems and Imaging, 2014, 8 (1) : 53-77. doi: 10.3934/ipi.2014.8.53

[3]

Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial and Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037

[4]

Denis R. Akhmetov, Renato Spigler. $L^1$-estimates for the higher-order derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1051-1074. doi: 10.3934/cpaa.2007.6.1051

[5]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems and Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[6]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[7]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[8]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1835-1861. doi: 10.3934/jimo.2021046

[9]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[10]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems and Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

[11]

Linghua Chen, Espen R. Jakobsen. L1 semigroup generation for Fokker-Planck operators associated to general Lévy driven SDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5735-5763. doi: 10.3934/dcds.2018250

[12]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352

[13]

J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems and Imaging, 2020, 14 (3) : 401-421. doi: 10.3934/ipi.2020019

[14]

Patrick Fischer. Multiresolution analysis for 2D turbulence. Part 1: Wavelets vs cosine packets, a comparative study. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 659-686. doi: 10.3934/dcdsb.2005.5.659

[15]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[16]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[17]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations and Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[18]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems and Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[19]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[20]

Michela Procesi. Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 541-552. doi: 10.3934/dcds.2005.13.541

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (176)
  • HTML views (197)
  • Cited by (0)

Other articles
by authors

[Back to Top]