June  2018, 12(3): 635-665. doi: 10.3934/ipi.2018027

A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers

1. 

School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China

2. 

College of Data Science, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China

3. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

4. 

Institute for Mathematics and its Applications, Minneapolis, MN 55455, USA

* Corresponding author: Ming Li

Received  June 2017 Revised  September 2017 Published  March 2018

Fund Project: The first author was supported in part by the Funds for Creative Research Groups of NSFC (No. 11621101) and the Major Research Plan of NSFC (No. 91630309). The second author was supported partially by the National Natural Science Foundation of China (Grant no 11771321). The third author was supported in part by the NSF grant DMS-1151308.

Consider the scattering of a time-harmonic plane wave by heterogeneous media consisting of linear or nonlinear point scatterers and extended obstacles. A generalized Foldy–Lax formulation is developed to take fully into account of the multiple scattering by the complex media. A new imaging function is proposed and an FFT-based direct imaging method is developed for the inverse obstacle scattering problem, which is to reconstruct the shape of the extended obstacles. The novel idea is to utilize the nonlinear point scatterers to excite high harmonic generation so that enhanced imaging resolution can be achieved. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

Citation: Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027
References:
[1]

S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics (with an appendix by Pavel Exner), 2nd Ed, AMS Chelsea Publishing, Providence, RI, 2005  Google Scholar

[2]

B. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20 (1999), 1551-1584.  doi: 10.1137/S1064827597325141.  Google Scholar

[3]

H. AmmariJ. GarnierH. KangM. Lim and K. Solna, Multistatic imaging of extended targets, SIAM J. Imaging Sci., 5 (2012), 564-600.  doi: 10.1137/10080631X.  Google Scholar

[4]

H. AmmariJ. Carnier and P. Millien, Backprojection imaging in nonlinear harmonic holography in the presence of measurement and medium noises, SIAM J. Imaging Sci., 7 (2014), 239-276.  doi: 10.1137/130926717.  Google Scholar

[5]

H. AmmariH. KangE. KimM. Lim and K. Louati, A direct algorithm for ultrasound imaging of internal corrosion, SIAM J. Numer. Anal., 49 (2011), 1177-1193.  doi: 10.1137/100784710.  Google Scholar

[6]

G. BaoS. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, J. Comput. Phys., 227 (2007), 755-762.  doi: 10.1016/j.jcp.2007.08.020.  Google Scholar

[7]

G. BaoK. HuangP. Li and H. Zhao, A direct imaging method for inverse scattering using the generalized Foldy–Lax formulation, Contemp. Math., 615 (2014), 49-70.   Google Scholar

[8]

G. BaoP. LiG. Lin and F. Triki, Invese scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp.   Google Scholar

[9]

P. BlomgrenG. Papanicolaou and H. Zhao, Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., 111 (2002), 230-248.  doi: 10.1121/1.1421342.  Google Scholar

[10]

L. BorceaG. GarnierG. Papanicolaou and C. Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004, 33pp.   Google Scholar

[11]

L. BorceaW. LiA.V. Mamonov and J. Schotland, Mamonov and J. Schotland, Second-harmonic imaging in random media, Inverse Problems, 33 (2017), 065004, 37pp.   Google Scholar

[12]

R. W. Boyd, Nonlinear Optics, 3rd Edition, Academic Press, New York, 2008.  Google Scholar

[13]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.  Google Scholar

[14]

D. P. ChallaG. Hu and M. Sini, Multiple scattering of electromagnetic waves by a finite number of point-like obstacles, Math. Models Methods Appl. Sci., 24 (2014), 863-899.  doi: 10.1142/S021820251350070X.  Google Scholar

[15]

D.P. Challa and M. Sini, Inverse scattering by point-like scatterers in the Foldy regime, Inverse Problems, 22 (2012), 125006, 39pp.   Google Scholar

[16]

D. P. Challa and M. Sini, On the justification of the Foldy–Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes, Multiscale Model. Simul., 12 (2014), 55-108.  doi: 10.1137/130919313.  Google Scholar

[17]

M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, 17 (2001), 591-595.  doi: 10.1088/0266-5611/17/4/301.  Google Scholar

[18]

J. ChengJ. Liu and G. Nakamura, The numerical realization of the probe method for the inverse scattering problems from the near-field data, Inverse Problems, 21 (2005), 839-855.  doi: 10.1088/0266-5611/21/3/004.  Google Scholar

[19]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[20]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Pure Appl. Math., John Wiley, New York, 1983.  Google Scholar

[21]

M. Danckwerts and L. Novotny, Optical frequency mixing at coupled gold nanoparticles, Phys. Rev. Lett., 98 (2007), 026104.  doi: 10.1103/PhysRevLett.98.026104.  Google Scholar

[22]

P. de VriesD. van Coevorden and A. Lagendijk, Point scatterers for classical waves, Rev. Mod. Phys., 70 (1998), 447-466.  doi: 10.1103/RevModPhys.70.447.  Google Scholar

[23]

A. Devaney, Super-resolution processing of multi-static data using time-reversal and MUSIC, preprint. Google Scholar

[24]

K. Erhard and R. Potthast, A numerical study of the probe method, SIAM J. Sci. Comput., 28 (2006), 1597-1612.  doi: 10.1137/040607149.  Google Scholar

[25]

L. Foldy, The multiple scattering of waves I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67 (1945), 107-119.  doi: 10.1103/PhysRev.67.107.  Google Scholar

[26]

L. Greengard and J.-Y. Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev., 46 (2004), 443-454.  doi: 10.1137/S003614450343200X.  Google Scholar

[27]

L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), 325-348.  doi: 10.1016/0021-9991(87)90140-9.  Google Scholar

[28]

B. Gremaud and T. Wellens, Nonlinear coherent transport of waves in disordered media, Phys. Rev. Lett., 100 (2008), 033902.   Google Scholar

[29]

B. Gremaud and T. Wellens, Speckle instability: Coherent effects in nonlinear disordered media, Phys. Rev. Lett., 104 (2010), 133901.  doi: 10.1103/PhysRevLett.104.133901.  Google Scholar

[30]

F. GruberE. Marengo and A. Devaney, Time-reversal imaging with multiple signal classification considering multiple scattering between the targets, J. Acoust. Soc. Am., 115 (2004), 3042-3047.  doi: 10.1121/1.1738451.  Google Scholar

[31]

S. HouK. Solna and H. Zhao, Imaging of location and geometry for extended targets using the response matrix, J. Comput. Phys., 199 (2004), 317-338.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[32]

S. HouK. Solna and H. Zhao, A direct imaging algorithm for extended targets, Inverse Problems, 22 (2006), 1151-1178.  doi: 10.1088/0266-5611/22/4/003.  Google Scholar

[33]

S. HouK. Solna and H. Zhao, A direct imaging method using far-field data, Inverse Problems, 23 (2007), 1533-1546.  doi: 10.1088/0266-5611/23/4/010.  Google Scholar

[34]

S. HouK. HuangK. Solna and H. Zhao, A phase and space coherent direct imaging method, J. Acoust. Soc. Am., 125 (2009), 227-238.  doi: 10.1121/1.3035835.  Google Scholar

[35]

G. HuA. Mantile and M. Sini, Direct and inverse acoustic scattering by a collection of extended and point-like scatterers, Multiscale Model. Simul., 12 (2014), 996-1027.  doi: 10.1137/130932107.  Google Scholar

[36]

K. Huang and P. Li, A two-scale multiple scattering problem, Multiscale Model. Simul., 8 (2010), 1511-1534.  doi: 10.1137/090771090.  Google Scholar

[37]

K. HuangP. Li and H. Zhao, An efficient algorithm for the generalized Foldy–Lax formulation, J. Comput. Phys., 234 (2013), 376-398.  doi: 10.1016/j.jcp.2012.09.027.  Google Scholar

[38]

K. HuangK. Solna and H. Zhao, Generalized Foldy–Lax formulation, J. Comput. Phys., 229 (2010), 4544-4553.  doi: 10.1016/j.jcp.2010.02.021.  Google Scholar

[39]

M. Ikehata, Reconstruction of an obstacle from the scattering amplitude at a fixed frequency, Inverse Problems, 14 (1998), 949-954.  doi: 10.1088/0266-5611/14/4/012.  Google Scholar

[40]

E. KerbratC. Prada and M. Fink, Imaging in the presence of grain noise using the decomposition of the time reversal operator, J. Acoust. Soc. Am., 113 (2003), 1230-1240.  doi: 10.1121/1.1548156.  Google Scholar

[41]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.  Google Scholar

[42]

J. LaiM. Kobayashi and L. Greengard, A fast solver for multi-particle scattering in a layered medium, Opt. Express, 22 (2014), 20481-20499.  doi: 10.1364/OE.22.020481.  Google Scholar

[43]

M. Lax, Multiple scattering of waves, Rev. Modern Phys., 23 (1951), 287-310.  doi: 10.1103/RevModPhys.23.287.  Google Scholar

[44]

J. LiH. Liu and J. Zou, Locating multiple multiscale acoustic scatterers, Multiscale Model. Simul., 12 (2014), 927-952.  doi: 10.1137/13093409X.  Google Scholar

[45]

W. Li and J. Schotland, Optical theorem for nonlinear media, Phys. Rev. A., 92 (2015), 043824.  doi: 10.1103/PhysRevA.92.043824.  Google Scholar

[46]

X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitude at a fixed frequency, Inverse Problems, 33 (2017), 085011, 20pp.   Google Scholar

[47]

P. Martin, Multiple Scattering: Interaction of Time-Harmonic Wave with $N$ Obstacles, Encyclopedia Math. Appl., 107, Cambridge University Press, Cambridge, 2006.  Google Scholar

[48]

R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources, J. Comput. Appl. Math., 114 (2000), 247-274.  doi: 10.1016/S0377-0427(99)00201-0.  Google Scholar

[49]

H. Zhao, Analysis of the response matrix for an extended target, SIAM J. Appl. Math., 64 (2004), 725-745.  doi: 10.1137/S0036139902415282.  Google Scholar

show all references

References:
[1]

S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden, Solvable Models in Quantum Mechanics (with an appendix by Pavel Exner), 2nd Ed, AMS Chelsea Publishing, Providence, RI, 2005  Google Scholar

[2]

B. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20 (1999), 1551-1584.  doi: 10.1137/S1064827597325141.  Google Scholar

[3]

H. AmmariJ. GarnierH. KangM. Lim and K. Solna, Multistatic imaging of extended targets, SIAM J. Imaging Sci., 5 (2012), 564-600.  doi: 10.1137/10080631X.  Google Scholar

[4]

H. AmmariJ. Carnier and P. Millien, Backprojection imaging in nonlinear harmonic holography in the presence of measurement and medium noises, SIAM J. Imaging Sci., 7 (2014), 239-276.  doi: 10.1137/130926717.  Google Scholar

[5]

H. AmmariH. KangE. KimM. Lim and K. Louati, A direct algorithm for ultrasound imaging of internal corrosion, SIAM J. Numer. Anal., 49 (2011), 1177-1193.  doi: 10.1137/100784710.  Google Scholar

[6]

G. BaoS. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, J. Comput. Phys., 227 (2007), 755-762.  doi: 10.1016/j.jcp.2007.08.020.  Google Scholar

[7]

G. BaoK. HuangP. Li and H. Zhao, A direct imaging method for inverse scattering using the generalized Foldy–Lax formulation, Contemp. Math., 615 (2014), 49-70.   Google Scholar

[8]

G. BaoP. LiG. Lin and F. Triki, Invese scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp.   Google Scholar

[9]

P. BlomgrenG. Papanicolaou and H. Zhao, Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., 111 (2002), 230-248.  doi: 10.1121/1.1421342.  Google Scholar

[10]

L. BorceaG. GarnierG. Papanicolaou and C. Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems, 27 (2011), 085004, 33pp.   Google Scholar

[11]

L. BorceaW. LiA.V. Mamonov and J. Schotland, Mamonov and J. Schotland, Second-harmonic imaging in random media, Inverse Problems, 33 (2017), 065004, 37pp.   Google Scholar

[12]

R. W. Boyd, Nonlinear Optics, 3rd Edition, Academic Press, New York, 2008.  Google Scholar

[13]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.  Google Scholar

[14]

D. P. ChallaG. Hu and M. Sini, Multiple scattering of electromagnetic waves by a finite number of point-like obstacles, Math. Models Methods Appl. Sci., 24 (2014), 863-899.  doi: 10.1142/S021820251350070X.  Google Scholar

[15]

D.P. Challa and M. Sini, Inverse scattering by point-like scatterers in the Foldy regime, Inverse Problems, 22 (2012), 125006, 39pp.   Google Scholar

[16]

D. P. Challa and M. Sini, On the justification of the Foldy–Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes, Multiscale Model. Simul., 12 (2014), 55-108.  doi: 10.1137/130919313.  Google Scholar

[17]

M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, 17 (2001), 591-595.  doi: 10.1088/0266-5611/17/4/301.  Google Scholar

[18]

J. ChengJ. Liu and G. Nakamura, The numerical realization of the probe method for the inverse scattering problems from the near-field data, Inverse Problems, 21 (2005), 839-855.  doi: 10.1088/0266-5611/21/3/004.  Google Scholar

[19]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[20]

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Pure Appl. Math., John Wiley, New York, 1983.  Google Scholar

[21]

M. Danckwerts and L. Novotny, Optical frequency mixing at coupled gold nanoparticles, Phys. Rev. Lett., 98 (2007), 026104.  doi: 10.1103/PhysRevLett.98.026104.  Google Scholar

[22]

P. de VriesD. van Coevorden and A. Lagendijk, Point scatterers for classical waves, Rev. Mod. Phys., 70 (1998), 447-466.  doi: 10.1103/RevModPhys.70.447.  Google Scholar

[23]

A. Devaney, Super-resolution processing of multi-static data using time-reversal and MUSIC, preprint. Google Scholar

[24]

K. Erhard and R. Potthast, A numerical study of the probe method, SIAM J. Sci. Comput., 28 (2006), 1597-1612.  doi: 10.1137/040607149.  Google Scholar

[25]

L. Foldy, The multiple scattering of waves I. General theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67 (1945), 107-119.  doi: 10.1103/PhysRev.67.107.  Google Scholar

[26]

L. Greengard and J.-Y. Lee, Accelerating the nonuniform fast Fourier transform, SIAM Rev., 46 (2004), 443-454.  doi: 10.1137/S003614450343200X.  Google Scholar

[27]

L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys., 73 (1987), 325-348.  doi: 10.1016/0021-9991(87)90140-9.  Google Scholar

[28]

B. Gremaud and T. Wellens, Nonlinear coherent transport of waves in disordered media, Phys. Rev. Lett., 100 (2008), 033902.   Google Scholar

[29]

B. Gremaud and T. Wellens, Speckle instability: Coherent effects in nonlinear disordered media, Phys. Rev. Lett., 104 (2010), 133901.  doi: 10.1103/PhysRevLett.104.133901.  Google Scholar

[30]

F. GruberE. Marengo and A. Devaney, Time-reversal imaging with multiple signal classification considering multiple scattering between the targets, J. Acoust. Soc. Am., 115 (2004), 3042-3047.  doi: 10.1121/1.1738451.  Google Scholar

[31]

S. HouK. Solna and H. Zhao, Imaging of location and geometry for extended targets using the response matrix, J. Comput. Phys., 199 (2004), 317-338.  doi: 10.1016/j.jcp.2004.02.010.  Google Scholar

[32]

S. HouK. Solna and H. Zhao, A direct imaging algorithm for extended targets, Inverse Problems, 22 (2006), 1151-1178.  doi: 10.1088/0266-5611/22/4/003.  Google Scholar

[33]

S. HouK. Solna and H. Zhao, A direct imaging method using far-field data, Inverse Problems, 23 (2007), 1533-1546.  doi: 10.1088/0266-5611/23/4/010.  Google Scholar

[34]

S. HouK. HuangK. Solna and H. Zhao, A phase and space coherent direct imaging method, J. Acoust. Soc. Am., 125 (2009), 227-238.  doi: 10.1121/1.3035835.  Google Scholar

[35]

G. HuA. Mantile and M. Sini, Direct and inverse acoustic scattering by a collection of extended and point-like scatterers, Multiscale Model. Simul., 12 (2014), 996-1027.  doi: 10.1137/130932107.  Google Scholar

[36]

K. Huang and P. Li, A two-scale multiple scattering problem, Multiscale Model. Simul., 8 (2010), 1511-1534.  doi: 10.1137/090771090.  Google Scholar

[37]

K. HuangP. Li and H. Zhao, An efficient algorithm for the generalized Foldy–Lax formulation, J. Comput. Phys., 234 (2013), 376-398.  doi: 10.1016/j.jcp.2012.09.027.  Google Scholar

[38]

K. HuangK. Solna and H. Zhao, Generalized Foldy–Lax formulation, J. Comput. Phys., 229 (2010), 4544-4553.  doi: 10.1016/j.jcp.2010.02.021.  Google Scholar

[39]

M. Ikehata, Reconstruction of an obstacle from the scattering amplitude at a fixed frequency, Inverse Problems, 14 (1998), 949-954.  doi: 10.1088/0266-5611/14/4/012.  Google Scholar

[40]

E. KerbratC. Prada and M. Fink, Imaging in the presence of grain noise using the decomposition of the time reversal operator, J. Acoust. Soc. Am., 113 (2003), 1230-1240.  doi: 10.1121/1.1548156.  Google Scholar

[41]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008.  Google Scholar

[42]

J. LaiM. Kobayashi and L. Greengard, A fast solver for multi-particle scattering in a layered medium, Opt. Express, 22 (2014), 20481-20499.  doi: 10.1364/OE.22.020481.  Google Scholar

[43]

M. Lax, Multiple scattering of waves, Rev. Modern Phys., 23 (1951), 287-310.  doi: 10.1103/RevModPhys.23.287.  Google Scholar

[44]

J. LiH. Liu and J. Zou, Locating multiple multiscale acoustic scatterers, Multiscale Model. Simul., 12 (2014), 927-952.  doi: 10.1137/13093409X.  Google Scholar

[45]

W. Li and J. Schotland, Optical theorem for nonlinear media, Phys. Rev. A., 92 (2015), 043824.  doi: 10.1103/PhysRevA.92.043824.  Google Scholar

[46]

X. Liu, A novel sampling method for multiple multiscale targets from scattering amplitude at a fixed frequency, Inverse Problems, 33 (2017), 085011, 20pp.   Google Scholar

[47]

P. Martin, Multiple Scattering: Interaction of Time-Harmonic Wave with $N$ Obstacles, Encyclopedia Math. Appl., 107, Cambridge University Press, Cambridge, 2006.  Google Scholar

[48]

R. Potthast, Stability estimates and reconstructions in inverse acoustic scattering using singular sources, J. Comput. Appl. Math., 114 (2000), 247-274.  doi: 10.1016/S0377-0427(99)00201-0.  Google Scholar

[49]

H. Zhao, Analysis of the response matrix for an extended target, SIAM J. Appl. Math., 64 (2004), 725-745.  doi: 10.1137/S0036139902415282.  Google Scholar

Figure 1.  Schematic of the problem geometry
Figure 2.  Schematic of the imaging modality with nonlinear point scatterers
Figure 3.  Imaging of two extended scatterers surrounded by 1000 linear point scatterers. (a) Example 1: $\kappa = 10$; (b) Example 2: $\kappa = 50$
Figure 4.  Example 3: Imaging of one extended scatterer with two fixed quadratically nonlinear point scatterers. (a) Imaging with $\kappa_1 = 2$; (b) Imaging with $\kappa_2 = 4$
Figure 5.  Example 3: Imaging of one extended scatterer with two moving quadratically nonlinear point scatterers. (a) Imaging with $\kappa_1 = 2$; (b) Imaging with $\kappa_2 = 4$
Figure 6.  Example 4: Imaging of two extended scatterers with two quadratically nonlinear point scatterers close by. (a) Imaging with $\kappa_1 = 5$; (b) Imaging with $\kappa_2 = 10$
Figure 7.  Example 4: Imaging of two extended scatterers with two quadratically nonlinear point scatterers far away. (a) Imaging with $\kappa_1 = 5$; (b) Imaging with $\kappa_2 = 10$
Figure 8.  Example 5: Imaging of two extended scatterers with two cubically nonlinear point scatterers. (a) Imaging with $\kappa_1 = 2$; (b) Imaging with $\kappa_3 = 6$
Figure 9.  Example 6: Imaging of two extended scatterers with two cubically nonlinear point scatterers. (a) Imaging with $\kappa_1 = 5$; (b) Imaging with $\kappa_3 = 15$
Table 1.  Parameters used in the numerical experiments
$N_{\rm point}$number of point scatterers
$N_{\rm boundary}$number of points to discretize the boundary of extended scatterer(s)
$N_{\rm direction}$number of incident and observation directions
$N_{\rm sampling}$number of sampling points along the $x$-and $y$-direction
$T_{\rm invert}$time to invert (factorize) the scattering matrix
$T_{\rm solver}$time to solve the linear system for one incidence
$T_{\rm ffp}$time to evaluate the far-field patterns
$T_{\rm NUFFT}$time to apply the NUFFT to evaluate the imaging function
$N_{\rm point}$number of point scatterers
$N_{\rm boundary}$number of points to discretize the boundary of extended scatterer(s)
$N_{\rm direction}$number of incident and observation directions
$N_{\rm sampling}$number of sampling points along the $x$-and $y$-direction
$T_{\rm invert}$time to invert (factorize) the scattering matrix
$T_{\rm solver}$time to solve the linear system for one incidence
$T_{\rm ffp}$time to evaluate the far-field patterns
$T_{\rm NUFFT}$time to apply the NUFFT to evaluate the imaging function
Table 2.  Time (in seconds) to solve the linear system (68) on an HP workstation
$N_{\rm point}$ $N_{\rm boundary}$Method 1Method 2Method 3
$1000$ $600$ $0.16$ $1.42$ $0.89$
$10000$ $600$ $8.9$fail to convergefail to converge
$N_{\rm point}$ $N_{\rm boundary}$Method 1Method 2Method 3
$1000$ $600$ $0.16$ $1.42$ $0.89$
$10000$ $600$ $8.9$fail to convergefail to converge
Table 3.  Results for imaging two extended scatterers surrounded by linear point scatterers
$\kappa$$N_{\rm point}$ $N_{\rm boundary}$ $N_{\rm direction}$ $N_{\rm sampling}$
Example 1101000600360500
Example 250100048001800500
$T_{\rm invert}$ $T_{\rm sampling}$ $T_{\rm ffp}$ $T_{\rm NUFFT}$
Example 17.95e-22.56e-32.23e-22.46e-1
Example 21.612.17e-23.49e-13.70
$\kappa$$N_{\rm point}$ $N_{\rm boundary}$ $N_{\rm direction}$ $N_{\rm sampling}$
Example 1101000600360500
Example 250100048001800500
$T_{\rm invert}$ $T_{\rm sampling}$ $T_{\rm ffp}$ $T_{\rm NUFFT}$
Example 17.95e-22.56e-32.23e-22.46e-1
Example 21.612.17e-23.49e-13.70
Table 4.  Results for imaging the extended scatterers surrounded by quadratically nonlinear point scatterers
$\kappa$$N_{\rm point}$ $N_{\rm boundary}$ $N_{\rm direction}$ $N_{\rm sampling}$
Example 322600360500
Example 4521200360500
$T_{\rm invert}$ $T_{\rm solver}$ $T_{\rm ffp}$ $T_{\rm NUFFT}$
Example 31.22e-38.52e-31.39e-23.39e-1
Example 41.90e-13.99e-31.96e-23.84e-1
$\kappa$$N_{\rm point}$ $N_{\rm boundary}$ $N_{\rm direction}$ $N_{\rm sampling}$
Example 322600360500
Example 4521200360500
$T_{\rm invert}$ $T_{\rm solver}$ $T_{\rm ffp}$ $T_{\rm NUFFT}$
Example 31.22e-38.52e-31.39e-23.39e-1
Example 41.90e-13.99e-31.96e-23.84e-1
Table 5.  Results for imaging the extended scatterers surrounded by cubically nonlinear point scatterers
$\kappa$$N_{\rm point}$ $N_{\rm boundary}$ $N_{\rm direction}$ $N_{\rm sampling}$
Example 522600360500
Example 6521200360500
$T_{\rm invert}$ $T_{\rm solver}$ $T_{\rm ffp}$ $T_{\rm NUFFT}$
Example 51.24e-31.00e-21.22e-24.33e-1
Example 64.22e-31.91e-22.11e-24.41e-1
$\kappa$$N_{\rm point}$ $N_{\rm boundary}$ $N_{\rm direction}$ $N_{\rm sampling}$
Example 522600360500
Example 6521200360500
$T_{\rm invert}$ $T_{\rm solver}$ $T_{\rm ffp}$ $T_{\rm NUFFT}$
Example 51.24e-31.00e-21.22e-24.33e-1
Example 64.22e-31.91e-22.11e-24.41e-1
[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[9]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[10]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[14]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[15]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[20]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (95)
  • HTML views (223)
  • Cited by (0)

Other articles
by authors

[Back to Top]