June  2018, 12(3): 733-743. doi: 10.3934/ipi.2018031

Uniqueness on recovery of piecewise constant conductivity and inner core with one measurement

1. 

School of Mathematics and Statistics, Hunan University of Commerce, School of Mathematics and Statistics, Central South University, Changsha, Hunan, China

2. 

School of Mathematics and Statistics, Central South University, Changsha, Hunan, China

* Corresponding author: Youjun Deng, dengyijun_001@163.com

Received  September 2017 Revised  November 2017 Published  March 2018

Fund Project: The work is supported by NSF grant of China No. 11601528, NSF grant of Hunan No. 2017JJ3432 and No. 2018JJ3622, Innovation-Driven Project of Central South University, No. 2018CX041, Mathematics and Interdisciplinary Sciences Project of Central South University, Major Project for National Natural Science Foundation of China(71790615).

We consider the recovery of piecewise constant conductivity and an unknown inner core in inverse conductivity problem. We first show the unique recovery of the conductivity in a one layer structure without inner core by one measurement on any surface enclosing the unknown medium. Then we recover the unknown inner core in a one layer structure. We then show that in a two layer structure, the conductivity can be uniquely recovered by using one measurement.

Citation: Xiaoping Fang, Youjun Deng. Uniqueness on recovery of piecewise constant conductivity and inner core with one measurement. Inverse Problems & Imaging, 2018, 12 (3) : 733-743. doi: 10.3934/ipi.2018031
References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 35 (2005), 1685-1691.  doi: 10.1090/S0002-9939-05-07810-X.  Google Scholar

[2]

H. AmmariG. CiraoloH. KangH. Lee and G. Milton, Spectral analysis of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), 667-692.  doi: 10.1007/s00205-012-0605-5.  Google Scholar

[3]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements Lecture Notes in Mathematics, 1846. Springer-Verlag, Berlin Heidelberg, 2004.  Google Scholar

[4]

H. Ammari and H. Kang, Polarization and Moment Tensors With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Springer-Verlag, Berlin Heidelberg, 2007.  Google Scholar

[5]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part Ⅰ: The conductivity problem, Comm. Math. Phys., 317 (2013), 253-266.  doi: 10.1007/s00220-012-1615-8.  Google Scholar

[6]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking. Part Ⅱ: The Helmholtz equation, Comm. Math. Phys., 317 (2013), 485-502.  doi: 10.1007/s00220-012-1620-y.  Google Scholar

[7]

H. AmmariH. KangH. LeeM. Lim and Y. Sanghyeon, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math., 73 (2013), 2055-2076.  doi: 10.1137/120903610.  Google Scholar

[8]

B. BarcelóE. Fabes and J. K. Seo, The inverse conductivity problem with one measurement: Uniqueness for convex polyhedra, Proc. Am. Math. Soc., 122 (1994), 183-189.  doi: 10.1090/S0002-9939-1994-1195476-6.  Google Scholar

[9]

E. Blåsten and H. Liu, Recovering piecewise constant refractive indices by a single far-field pattern, preprint, arXiv: 1705.00815 Google Scholar

[10]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.  doi: 10.1093/imamat/31.3.253.  Google Scholar

[11]

Y. DengX. Fang and J. Li, Plasmon resonance and heat generation in nanostructures, Math. Method Appl. Sci., 38 (2015), 4663-4672.  doi: 10.1002/mma.3448.  Google Scholar

[12]

L. EscauriazaE. B. Fabes and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries, Proc. Amer. Math. Soc., 115 (1992), 1069-1076.  doi: 10.1090/S0002-9939-1992-1092919-1.  Google Scholar

[13]

A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana Univ. Math. J., 38 (1989), 553-579.  doi: 10.1512/iumj.1989.38.38027.  Google Scholar

[14]

G. HuM. Salo and E. V. Vesalainen, Shape identification in inverse medium scattering, SIAM J. Math. Anal., 48 (2016), 152-165.  doi: 10.1137/15M1032958.  Google Scholar

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.  Google Scholar

[16]

V. Isakov and J. Powell, On the inverse conductivity problem with one measurement, Inverse Problem, 6 (1990), 311-318.  doi: 10.1088/0266-5611/6/2/011.  Google Scholar

[17]

H. Kang and J. K. Seo, Inverse conductivity problem with one measurement: Uniqueness of balls in $ {\mathbb{R}}^3$, SIAM J. Appl. Math., 59 (1990), 1533-1539.  doi: 10.1137/S0036139997324595.  Google Scholar

[18]

O. D. Kellogg, Foundations of Potential Theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York, 1967.  Google Scholar

[19]

D. KhavinsonM. Putinar and H. S. Shapiro, Poincaré's variational problem in potential theory, Arch. Ration. Mech. Anal., 185 (2007), 143-184.  doi: 10.1007/s00205-006-0045-1.  Google Scholar

[20]

J. LiH. LiuZ. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers, SIAM J. Appl. Math., 73 (2013), 1721-1746.  doi: 10.1137/130907690.  Google Scholar

[21]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33(2017), 065001, 20pp.  Google Scholar

[22]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[23]

J. K. Seo, A uniqueness result on inverse conductivity problem with two measurements, J. Fourier Anal. Appl., 2 (1996), 227-235.   Google Scholar

[24]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.  doi: 10.2307/1971291.  Google Scholar

[25]

J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse Problems in Partial Differential Equations(Arcata, CA, 1989), SIAM, Philadelphia, (1990), 101-139.  Google Scholar

[26]

Inverse boundary value problems for partial differential equations, Proceedings of the International Congress of Mathematicians, (Berlin, 1998) Documenta Mathematica, 3(1998), 77-86.  Google Scholar

[27]

G. Uhlmann, Developments in inverse problems since Calderón's foundational paper, Harmonic Analysis and Partial Differential Equations, M. Christ, C. Kenig and C. Sadosky, eds., University of Chicago Press, (1999), 295-345.  Google Scholar

show all references

References:
[1]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 35 (2005), 1685-1691.  doi: 10.1090/S0002-9939-05-07810-X.  Google Scholar

[2]

H. AmmariG. CiraoloH. KangH. Lee and G. Milton, Spectral analysis of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208 (2013), 667-692.  doi: 10.1007/s00205-012-0605-5.  Google Scholar

[3]

H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements Lecture Notes in Mathematics, 1846. Springer-Verlag, Berlin Heidelberg, 2004.  Google Scholar

[4]

H. Ammari and H. Kang, Polarization and Moment Tensors With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences, Springer-Verlag, Berlin Heidelberg, 2007.  Google Scholar

[5]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part Ⅰ: The conductivity problem, Comm. Math. Phys., 317 (2013), 253-266.  doi: 10.1007/s00220-012-1615-8.  Google Scholar

[6]

H. AmmariH. KangH. Lee and M. Lim, Enhancement of near cloaking. Part Ⅱ: The Helmholtz equation, Comm. Math. Phys., 317 (2013), 485-502.  doi: 10.1007/s00220-012-1620-y.  Google Scholar

[7]

H. AmmariH. KangH. LeeM. Lim and Y. Sanghyeon, Enhancement of near cloaking for the full Maxwell equations, SIAM J. Appl. Math., 73 (2013), 2055-2076.  doi: 10.1137/120903610.  Google Scholar

[8]

B. BarcelóE. Fabes and J. K. Seo, The inverse conductivity problem with one measurement: Uniqueness for convex polyhedra, Proc. Am. Math. Soc., 122 (1994), 183-189.  doi: 10.1090/S0002-9939-1994-1195476-6.  Google Scholar

[9]

E. Blåsten and H. Liu, Recovering piecewise constant refractive indices by a single far-field pattern, preprint, arXiv: 1705.00815 Google Scholar

[10]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259.  doi: 10.1093/imamat/31.3.253.  Google Scholar

[11]

Y. DengX. Fang and J. Li, Plasmon resonance and heat generation in nanostructures, Math. Method Appl. Sci., 38 (2015), 4663-4672.  doi: 10.1002/mma.3448.  Google Scholar

[12]

L. EscauriazaE. B. Fabes and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries, Proc. Amer. Math. Soc., 115 (1992), 1069-1076.  doi: 10.1090/S0002-9939-1992-1092919-1.  Google Scholar

[13]

A. Friedman and V. Isakov, On the uniqueness in the inverse conductivity problem with one measurement, Indiana Univ. Math. J., 38 (1989), 553-579.  doi: 10.1512/iumj.1989.38.38027.  Google Scholar

[14]

G. HuM. Salo and E. V. Vesalainen, Shape identification in inverse medium scattering, SIAM J. Math. Anal., 48 (2016), 152-165.  doi: 10.1137/15M1032958.  Google Scholar

[15]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer, New York, 1998.  Google Scholar

[16]

V. Isakov and J. Powell, On the inverse conductivity problem with one measurement, Inverse Problem, 6 (1990), 311-318.  doi: 10.1088/0266-5611/6/2/011.  Google Scholar

[17]

H. Kang and J. K. Seo, Inverse conductivity problem with one measurement: Uniqueness of balls in $ {\mathbb{R}}^3$, SIAM J. Appl. Math., 59 (1990), 1533-1539.  doi: 10.1137/S0036139997324595.  Google Scholar

[18]

O. D. Kellogg, Foundations of Potential Theory, Reprint from the first edition of 1929. Die Grundlehren der Mathematischen Wissenschaften, Band 31 Springer-Verlag, Berlin-New York, 1967.  Google Scholar

[19]

D. KhavinsonM. Putinar and H. S. Shapiro, Poincaré's variational problem in potential theory, Arch. Ration. Mech. Anal., 185 (2007), 143-184.  doi: 10.1007/s00205-006-0045-1.  Google Scholar

[20]

J. LiH. LiuZ. Shang and H. Sun, Two single-shot methods for locating multiple electromagnetic scatterers, SIAM J. Appl. Math., 73 (2013), 1721-1746.  doi: 10.1137/130907690.  Google Scholar

[21]

H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33(2017), 065001, 20pp.  Google Scholar

[22]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[23]

J. K. Seo, A uniqueness result on inverse conductivity problem with two measurements, J. Fourier Anal. Appl., 2 (1996), 227-235.   Google Scholar

[24]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169.  doi: 10.2307/1971291.  Google Scholar

[25]

J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, Inverse Problems in Partial Differential Equations(Arcata, CA, 1989), SIAM, Philadelphia, (1990), 101-139.  Google Scholar

[26]

Inverse boundary value problems for partial differential equations, Proceedings of the International Congress of Mathematicians, (Berlin, 1998) Documenta Mathematica, 3(1998), 77-86.  Google Scholar

[27]

G. Uhlmann, Developments in inverse problems since Calderón's foundational paper, Harmonic Analysis and Partial Differential Equations, M. Christ, C. Kenig and C. Sadosky, eds., University of Chicago Press, (1999), 295-345.  Google Scholar

[1]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[2]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[3]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[4]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[5]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[8]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[12]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[13]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[14]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[17]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[18]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[19]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[20]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (115)
  • HTML views (201)
  • Cited by (0)

Other articles
by authors

[Back to Top]