[1]
|
M. Aharon, M. Elad and A. Bruckstein, rmk-svd: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process., 54 (2006), 4311-4322.
doi: 10.1109/TSP.2006.881199.
|
[2]
|
E. Arias-Castro, J. Salmon and R. Willett, Oracle inequalities and minimax rates for non-local means and related adaptive kernel-based methods, Siam Journal on Imaging Sciences, 5 (2012), 944-992.
doi: 10.1137/110859403.
|
[3]
|
R. C. Bilcu and M. Vehvilainen, Fast nonlocal means for image denoising, In Proc. of SPIE Conf. on Digital Photography III, 6502 (2007), 65020R.
doi: 10.1117/12.695079.
|
[4]
|
J. Boulanger, C. Kervrann, P. Bouthemy, P. Elbau, J. B. Sibarita and J. Salamero, Patch-based nonlocal functional for denoising fluorescence microscopy image sequences, IEEE Transactions on Medical Imaging, 29 (2010), 442-454.
doi: 10.1109/TMI.2009.2033991.
|
[5]
|
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024.
|
[6]
|
A. Buades, B. Coll and J. M. Morel, The staircasing effect in neighborhood filters and its solution, IEEE Trans. Image Process., 15 (2006), 1499-1505.
doi: 10.1109/TIP.2006.871137.
|
[7]
|
T. Buades, Y. Lou, J. M. Morel and Z. Tang, A note on multi-image denoising, In Int. workshop on Local and Non-Local Approximation in Image Processing, pages 1–15, August 2009.
doi: 10.1109/LNLA.2009.5278408.
|
[8]
|
P. Chatterjee and P. Milanfar, A generalization of non-local means via kernel regression, In Proc. of SPIE Conf. on Computational Imaging, Citeseer, 6814 (2008), 6814Op.
doi: 10.1117/12.778615.
|
[9]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[10]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Bm3d image denoising with shape-adaptive principal component analysis, In Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS 09), volume 49, Citeseer, 2009.
|
[11]
|
C. A. Deledalle, V. Duval and J. Salmon, Non-local methods with shape-adaptive patches (nlm-sap), Journal of Mathematical Imaging and Vision, 43 (2012), 103-120.
doi: 10.1007/s10851-011-0294-y.
|
[12]
|
D. L. Donoho and J. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81 (1994), 425-455.
doi: 10.1093/biomet/81.3.425.
|
[13]
|
V. Duval, J.-F. Aujol and Y. Gousseau, A bias-variance approach for the nonlocal means, SIAM Journal on Imaging Sciences, 4 (2011), 760-788.
doi: 10.1137/100790902.
|
[14]
|
J. Q. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications, Chapman & Hall, London, 1996.
|
[15]
|
A. Foi, V. Katkovnik, K. Egiazarian and J. Astola, A novel anisotropic local polynomial estimator based on directional multiscale optimizations, In Proc. 6th IMA Int. Conf. Math. in Signal Process, pages 79–82, Citeseer.
|
[16]
|
D. K. Hammond and E. P. Simoncelli, Image modeling and denoising with orientation-adapted gaussian scale mixtures, IEEE Trans. Image Process., 17 (2008), 2089-2101.
doi: 10.1109/TIP.2008.2004796.
|
[17]
|
K. Hirakawa and T. W. Parks, Image denoising using total least squares, IEEE Trans. Image Process., 15 (2006), 2730-2742.
doi: 10.1109/TIP.2006.877352.
|
[18]
|
H. Hu, B. Li and Q. Liu, Removing mixture of gaussian and impulse noise by patch-basedweighted means, Journal of Scientific Computing, 67 (2016), 103-129.
doi: 10.1007/s10915-015-0073-9.
|
[19]
|
J. Immerkaer, Fast noise variance estimation, Computer vision and image understanding, 64 (1996), 300-302.
doi: 10.1006/cviu.1996.0060.
|
[20]
|
Q. Jin, I. Grama, C. Kervrann and Q. Liu, Nonlocal means and optimal weights for noise removal, SIAM Journal on Imaging Sciences, 10 (2017), 1878-1920.
doi: 10.1137/16M1080781.
|
[21]
|
Q. Jin, I. Grama and Q. Liu, Removing gaussian noise by optimization of weights in non-local means, preprint, arXiv: 1109.5640.
|
[22]
|
Q. Jin, I. Grama and Q. Liu, A new poisson noise filter based on weights optimization, Journal of Scientific Computing, 58 (2014), 548-573.
doi: 10.1007/s10915-013-9743-7.
|
[23]
|
V. Karnati, M. Uliyar and S. Dey, Fast non-local algorithm for image denoising, In IEEE International Conference on Image Processing (ICIP), 2009 16th, pages 3873–3876, IEEE, 2009.
doi: 10.1109/ICIP.2009.5414044.
|
[24]
|
V. Katkovnik, A. Foi, K. Egiazarian and J. Astola, Directional varying scale approximations for anisotropic signal processing, In Proc. XII European Signal Proc. Conf., EUSIPCO 2004, Vienna, pages 101–104, 2004.
|
[25]
|
V. Katkovnik, A. Foi, K. Egiazarian and J. Astola, From local kernel to nonlocal multiple-model image denoising, Int. J. Comput. Vis., 86 (2010), 1-32.
doi: 10.1007/s11263-009-0272-7.
|
[26]
|
C. Kervrann and J. Boulanger, Optimal spatial adaptation for patch-based image denoising, IEEE Trans. Image Process., 15 (2006), 2866-2878.
doi: 10.1109/TIP.2006.877529.
|
[27]
|
C. Kervrann and J. Boulanger, Local adaptivity to variable smoothness for exemplar-based image regularization and representation, Int. J. Comput. Vis., 79 (2008), 45-69.
doi: 10.1007/s11263-007-0096-2.
|
[28]
|
M. Lebrun, A. Buades and J. M. Morel, Implementation of the "Non-Local Bayes" (NL-bayes) image denoising algorithm, Image Processing On Line, 2013 (2013), 1-42.
|
[29]
|
M. Lebrun, A. Buades and J. M. Morel, A nonlocal bayesian image denoising algorithm, SIAM Journal on Imaging Sciences, 6 (2013), 1665-1688.
doi: 10.1137/120874989.
|
[30]
|
A. Levin and B. Nadler, Natural image denoising: Optimality and inherent bounds, In Computer Vision and Pattern Recognition, pages 2833–2840, 2011.
doi: 10.1109/CVPR.2011.5995309.
|
[31]
|
B. Li, Q. Liu, J. Xu and X. Luo, A new method for removing mixed noises, Science China Information Sciences, 54 (2011), 51-59.
doi: 10.1007/s11432-010-4128-0.
|
[32]
|
Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput., 42 (2010), 185-197.
doi: 10.1007/s10915-009-9320-2.
|
[33]
|
M. Mahmoudi and G. Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal. Proc. Let., 12 (2005), 839-842.
doi: 10.1109/LSP.2005.859509.
|
[34]
|
A. Maleki, M. Narayan and R. Baraniuk, Suboptimality of Nonlocal Means on Images with Sharp Edges, In Annual Allerton Conference on Communication, Control, and Computing, 2011.
|
[35]
|
A. Maleki, M. Narayan and R. Baraniuk, Anisotropic nonlocal means denoising, Applied and Computational Harmonic Analysis, 35 (2013), 452-482.
doi: 10.1016/j.acha.2012.11.003.
|
[36]
|
J. Polzehl and V. Spokoiny, Propagation-separation approach for local likelihood estimation, Probab. Theory Rel. Fields, 135 (2006), 335-362.
doi: 10.1007/s00440-005-0464-1.
|
[37]
|
S. Roth and M. J. Black, Fields of experts, Int. J. Comput. Vision, 82 (2009), 205-229.
doi: 10.1007/s11263-008-0197-6.
|
[38]
|
J. Salmon and E. Le Pennec, Nl-means and aggregation procedures, In IEEE Int. Conf. Image Process. (ICIP), pages 2977–2980. IEEE, 2009.
doi: 10.1109/ICIP.2009.5414512.
|
[39]
|
N. A. Thacker, P. A. Bromiley and J. V. Manjonb, A quantitative theory of the non-local means algorithm, In Proc. MIUA 2008, Dundee, Scotland, pages 174–178. Citeseer, 2008.
|
[40]
|
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, In Proc. Int. Conf. Computer Vision, pages 839–846, 1998.
doi: 10.1109/ICCV.1998.710815.
|
[41]
|
D. Van De Ville and M. Kocher, Non-local means with dimensionality reduction and sure-based parameter selection, IEEE Trans. Image Process., 20 (2010), 2683-2690.
doi: 10.1109/TIP.2011.2121083.
|
[42]
|
R. Vignesh, B. T. Oh and C. C. J. Kuo, Fast non-local means (nlm) computation with probabilistic early termination, IEEE Signal. Proc. Let., 17 (2010), 277-280.
doi: 10.1109/LSP.2009.2038956.
|
[43]
|
Y. Q. Wang, The implementation of sure guided piecewise linear image denoising, Image Processing On Line, 2013 (2013), 43-67.
doi: 10.5201/ipol.2013.52.
|
[44]
|
L. P. Yaroslavsky, Digital Picture Processing. An Introduction, In Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-642-81929-2.
|