[1]
|
M. Alsaker, S. Hamilton and A. Hauptmann, A direct D-bar method for partial boundary data electrical impedance tomography with a priori information, Inverse Problems and Imaging, 11 (2017), 427-454.
doi: 10.3934/ipi.2017020.
|
[2]
|
M. Alsaker and J. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci, 9 (2016), 1619-1654.
doi: 10.1137/15M1020137.
|
[3]
|
M. Arad, S. Zlochiver, T. Davidson, Y. Shoenfeld, A. Adunsky and A. Abboud, The detection of pleural effusion using a parametric eit technique, Physiol. Meas., 30 (2009), 421-428.
doi: 10.1088/0967-3334/30/4/006.
|
[4]
|
N. J. Avis and D. C. Barber, Incorporating a priori information into the Sheffield filtered backprojection algorithm, Physiol. Meas., 16 (1995), A111-A122.
doi: 10.1088/0967-3334/16/3A/011.
|
[5]
|
U. Baysal and B. M. Eyüboglu, Use of a priori information in estimating tissue resistivities - a simulation study, Phys. Med. and Biol., 43 (1998), 3589-3606.
|
[6]
|
B. H. Brown, Electrical impedance tomography (EIT): A review, Journal of medical engineering & technology, 27 (2003), 97-108.
doi: 10.1080/0309190021000059687.
|
[7]
|
E. D. L. B. Camargo, Development of an Absolute Electrical Impedance Imaging Algorithm for Clinical Use, PhD thesis, University of São Paulo, 2013.
|
[8]
|
E. Costa, C. Chaves, S. Gomes, M. Beraldo, M. Volpe, M. Tucci, I. Schettino, S. Bohm, C. Carvalho, H. Tanaka and L. R.G. and M. Amato, Real-time detection of pneumothorax using electrical impedance tomography, Critical Care Medicine, 36 (2008), 1230-1238.
doi: 10.1097/CCM.0b013e31816a0380.
|
[9]
|
E. Costa, R. Gonzalez Lima and M. Amato, Electrical impedance tomography, in Intensive Care Medicine (ed. J. Vincent), Springer, New York, 2009, 394–404.
|
[10]
|
H. Dehghani, D. C. Barber and I. Basarab-Horwath, Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography, Physiol. Meas., 20 (1999), 87-102.
|
[11]
|
D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Probl., 10 (1994), 317-334.
doi: 10.1088/0266-5611/10/2/008.
|
[12]
|
M. Dodd and J. Mueller, A real-time D-bar algorithm for 2-D electrical impedance tomography data, Inverse Probl. Imag., 8 (2014), 1013-1031.
doi: 10.3934/ipi.2014.8.1013.
|
[13]
|
L. D. Faddeev, Increasing solutions of the schroedinger equation, Fifty Years of Mathematical Physics, (2016), 34-36.
doi: 10.1142/9789814340960_0003.
|
[14]
|
D. Ferrario, B. Grychtol, A. Adler, J. Sola, S. H. Bohm and M. Bodenstein, Toward morphological thoracic EIT: Major signal sources correspond to respective organ locations in CT, IEEE T. Med. Imaging, 59 (2012), 3000-3008.
doi: 10.1109/TBME.2012.2209116.
|
[15]
|
D. Flores-Tapia and S. Pistorius, Electrical impedance tomography reconstruction using a monotonicity approach based on a priori knowledge, in Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010, 4996–4999.
doi: 10.1109/IEMBS.2010.5627204.
|
[16]
|
I. Frerichs, S. Pulletz, G. Elke, F. Reifferscheid, D. Schädler, J. Scholz and N. Weiler, Assessment of changes in distribution of lung perfusion by electrical impedance tomography, Respiration, 77 (2009), 282-291.
doi: 10.1159/000193994.
|
[17]
|
S. Hamilton, J. Mueller and M. Alsaker, Incorporating a spatial prior into nonlinear d-bar eit imaging for complex admittivities, IEEE T. Med. Imaging, 36 (2017), 457-466.
doi: 10.1109/TMI.2016.2613511.
|
[18]
|
C. N. L. Herrera, M. F. M. Vallejo, J. L. Mueller and R. G. Lima, Direct 2-D reconstructions of conductivity and permittivity from EIT data on a human chest, IEEE T. Med. Imaging, 34 (2015), 267-274.
|
[19]
|
D. S. Holder, Electrical Impedance Tomography: Methods, History and Applications, CRC Press, 2004.
doi: 10.1201/9781420034462.
|
[20]
|
D. Isaacson, J. L. Mueller, J. C. Newell and S. Siltanen, Reconstructions of chest phantoms by the D-bar method for electrical impedance tomography, IEEE T. Med. Imaging, 23 (2004), 821-828.
doi: 10.1109/TMI.2004.827482.
|
[21]
|
J. P. Kaipio, V. Kolehmainen, M. Vauhkonen and E. Somersalo, Inverse problems with structural prior information, Inverse Probl., 15 (1999), 713-729.
doi: 10.1088/0266-5611/15/3/306.
|
[22]
|
K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imag., 3 (2009), 599-624.
doi: 10.3934/ipi.2009.3.599.
|
[23]
|
K. Lowhagen, S. Lundin and O. Stenqvist, Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome - assessed by electric impedance tomography, Minerva Anestesiologica, 76 (2010), 1024-1035.
|
[24]
|
M. Mellenthin, J. Mueller, E. de Camargo, F. de Moura, T. Santos, R. Lima, S. Hamilton, P. Muller and M. Alsaker, The ACE1 electrical impedance tomography system for thoracic imaging, In review.
|
[25]
|
T. Muders, H. Luepschen and C. Putensen, Impedance tomography as a new monitoring technique, Curr Opin Crit Care, 16 (2010), 269-275.
doi: 10.1097/MCC.0b013e3283390cbf.
|
[26]
|
J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, Philadelphia, PA, 2012.
doi: 10.1137/1.9781611972344.
|
[27]
|
E. K. Murphy and J. L. Mueller, Effect of domain shape modeling and measurement errors on the 2-D D-bar method for EIT, IEEE T. Med. Imaging, 28 (2009), 1576-1584.
doi: 10.1109/TMI.2009.2021611.
|
[28]
|
A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., 143 (1996), 71-96.
doi: 10.2307/2118653.
|
[29]
|
D. Nguyen, J. C. Thiagalingam and A. A. McEwan, A review on electrical impedance tomography for pulmonary perfusion imaging, Physiol. Meas., 33 (2012), 695-706.
doi: 10.1088/0967-3334/33/5/695.
|
[30]
|
J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer Verlag, 2006.
|
[31]
|
R. G. Novikov, Multidimensional inverse spectral problem for the equation —$δ$$ψ$ + (v(x) — eu(x))$ψ$ = 0, Functional Analysis and Its Applications, 22 (1988), 263-272.
doi: 10.1007/BF01077418.
|
[32]
|
H. Reinius, J. B. Borges, F. Fredén, L. Jideus, E. D. Camargo, M. B. Amato, G. Hedenstierna, A. Larsson and F. Lennmyr, Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax, Acta Anaesthesiol Scand., 59 (2015), 354-368.
doi: 10.1111/aas.12455.
|
[33]
|
S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse Probl., 16 (2000), 681-699.
doi: 10.1088/0266-5611/16/3/310.
|
[34]
|
S. Siltanen, Electrical Impedance Tomography and Faddeev Green's Functions, PhD thesis, Helsinki University of Technology, 1999.
|
[35]
|
M. Soleimani, Electrical impedance tomography imaging using a priori ultrasound data, BioMed. Eng. OnLine, 5.
|
[36]
|
M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE T. Med. Imaging, 17 (1998), 285-293.
doi: 10.1109/42.700740.
|
[37]
|
J. Victorino, J. Borges, V. Okamoto, G. Matos, M. Tucci, M. Caramez, H. Tanaka, F. Sipmann, D. Santos, C. Barbas, C. Carvalho and M. P. Amato, Imbalances in regional lung ventilation: a validation study on electrical impedance tomography, American Journal of Respiratory and Critical Care Medicine, 169 (2004), 791-800.
doi: 10.1164/rccm.200301-133OC.
|