We study the inverse source problem for the Helmholtz equation from boundary Cauchy data with multiple wave numbers. The main goal of this paper is to study the uniqueness and increasing stability when the (pseudo)convexity or non-trapping conditions for the related hyperbolic problem are not satisfied. We consider general elliptic equations of the second order and arbitrary observation sites. To show the uniqueness we use the analytic continuation, the Fourier transform with respect to the wave numbers and uniqueness in the lateral Cauchy problem for hyperbolic equations. Numerical examples in 2 spatial dimension support the analysis and indicate the increasing stability for large intervals of the wave numbers, while analytic proofs of the increasing stability are not available.
Citation: |
Figure 5.
Annular domain with different observation sites for exact measurement data.
[1] |
H. Ammari, G. Bao and J. Fleming, Inverse source problem for Maxwell's equation in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382.
doi: 10.1137/S0036139900373927.![]() ![]() ![]() |
[2] |
C. A. Balanis, Antenna Theory-Analysis and Design, Wiley, Hoboken, NJ, 2005.
![]() |
[3] |
G. Bao, J. Lin and F. Triki, A multi-frequency inverse source problem, Journal of Differential Equations, 249 (2010), 3443-3465.
doi: 10.1016/j.jde.2010.08.013.![]() ![]() ![]() |
[4] |
G. Bao, J. Lin and F. Triki, Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data, Contemp. Math., 548 (2011), 45-60.
doi: 10.1090/conm/548/10835.![]() ![]() ![]() |
[5] |
G. Bao, S. Lu, W. Rundell and B. Xu, A recursive algorithm for multi-frequency acoustic inverse source problems, SIAM J. Numer. Anal., 53 (2015), 1608-1628.
doi: 10.1137/140993648.![]() ![]() ![]() |
[6] |
J. Cheng, V. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804.
doi: 10.1016/j.jde.2015.11.030.![]() ![]() ![]() |
[7] |
M. Eller and N. P. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005 (20pp).
doi: 10.1088/0266-5611/25/11/115005.![]() ![]() ![]() |
[8] |
M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, Nonlinear Partial Differential Equations and Their Applications (D Cioranescu and J.-L. Lions, eds.), North-Holland, Elsevier Science, 31 (2002), 329-349.
doi: 10.1016/S0168-2024(02)80016-9.![]() ![]() ![]() |
[9] |
V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., 426 (2007), 255-267.
doi: 10.1090/conm/426/08192.![]() ![]() ![]() |
[10] |
V. Isakov, On increasing stability in the Cauchy Problem for general elliptic equations, New Prospects in Direct, Inverse, and Control Problems for Evolution Equations Ch. 10. Springer INdAM Series. (A. Favini et al., ed.), North-Holland, Elsevier Science, Springer-Verlag, 2014.
![]() |
[11] |
V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017.
doi: 10.1007/978-3-319-51658-5.![]() ![]() ![]() |
[12] |
V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. Anal., 18 (2011), 1-29.
doi: 10.4310/MAA.2011.v18.n1.a1.![]() ![]() ![]() |
[13] |
V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map, Inverse Problems and Imaging, 8 (2014), 1139-1150.
doi: 10.3934/ipi.2014.8.1139.![]() ![]() ![]() |
[14] |
V. Isakov, R.-Y. Lai and J.-N. Wang, Increasing stability for conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594.
doi: 10.1137/15M1019052.![]() ![]() ![]() |
[15] |
V. Isakov and S. Lu, Increasing stability in the inverse source problem with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18.
doi: 10.1137/17M1112704.![]() ![]() ![]() |
[16] |
F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585.
doi: 10.1002/cpa.3160130402.![]() ![]() ![]() |
[17] |
J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin-Heidelberg, 1972.
![]() ![]() |
[18] |
T. Kato, Perturbation Theory for Linear Operators, Band 132 Springer-Verlag New York, Inc., New York, 1966.
![]() ![]() |
[19] |
D. Tataru, Unique continuation for solutions to PDE's: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884.
doi: 10.1080/03605309508821117.![]() ![]() ![]() |
[20] |
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922.
![]() |