[1]
|
F. Cakoni, D. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.
doi: 10.1016/j.crma.2010.02.003.
|
[2]
|
F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
doi: 10.1137/1.9781611974461.ch1.
|
[3]
|
F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.
doi: 10.1137/090769338.
|
[4]
|
F. Cakoni, H. Harris and S. Moskow, The imaging of small perturbations in an anisotropic media, Computers and Mathematics with Applications, 74 (2017), 2769-2783.
doi: 10.1016/j.camwa.2017.06.050.
|
[5]
|
F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp.
doi: 10.1088/0266-5611/29/10/104014.
|
[6]
|
F. Cakoni, S. Moskow and S. Rome, The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions, Inverse Probl. Imaging, 9 (2015), 725-748.
doi: 10.3934/ipi.2015.9.725.
|
[7]
|
L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 2005.
doi: 10.1007/b138375.
|
[8]
|
A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, C. R. Math. Acad. Sci. Paris, 354 (2016), 377-382.
doi: 10.1016/j.crma.2016.01.015.
|
[9]
|
A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp.
doi: 10.1088/0266-5611/29/10/104011.
|
[10]
|
P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.
doi: 10.1093/acprof:oso/9780198508885.001.0001.
|
[11]
|
S. Moskow, Nonlinear eigenvalue approximation for compact operators, J. Math. Phys., 56 (2015), 113512, 11pp.
doi: 10.1063/1.4936304.
|
[12]
|
J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725.
doi: 10.1090/S0025-5718-1975-0383117-3.
|
[13]
|
V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectr. Theory, 7 (2017), 1-31.
doi: 10.4171/JST/154.
|
[14]
|
L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp.
doi: 10.1088/0266-5611/29/10/104001.
|
[15]
|
L. Robbiano, Counting function for interior transmission eigenvalues, Math. Control Relat. Fields, 6 (2016), 167-183.
doi: 10.3934/mcrf.2016.6.167.
|
[16]
|
J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.
doi: 10.1137/110836420.
|