August  2018, 12(4): 971-992. doi: 10.3934/ipi.2018041

Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast

1. 

Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

2. 

Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Received  August 2017 Published  June 2018

In this paper we revisit the transmission eigenvalue problem for an inhomogeneous media of compact support perturbed by small penetrable homogeneous inclusions. Assuming that the inhomogeneous background media is known and smooth, we investigate how these small volume inclusions affect the transmission eigenvalues. Our perturbation analysis makes use of the formulation of the transmission eigenvalue problem introduced Kirsch in [8], which requires that the contrast of the inhomogeneity is of one-sign only near the boundary. Thus, our approach can handle small perturbations with positive, negative or zero (voids) contrasts. In addition to proving the convergence rate for the eigenvalues corresponding to the perturbed media as inclusions' volume goes to zero, we also provide the explicit first correction term in the asymptotic expansion for simple eigenvalues. The correction term involves computable information about the known inhomogeneity as well as the location, size and refractive index of small perturbations. Our asymptotic formula has the potential to be used to recover information about small inclusions from knowledge of the real transmission eigenvalues, which can be determined from scattering data.

Citation: Fioralba Cakoni, Shari Moskow, Scott Rome. Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast. Inverse Problems & Imaging, 2018, 12 (4) : 971-992. doi: 10.3934/ipi.2018041
References:
[1]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[2]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.  Google Scholar

[3]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[4]

F. CakoniH. Harris and S. Moskow, The imaging of small perturbations in an anisotropic media, Computers and Mathematics with Applications, 74 (2017), 2769-2783.  doi: 10.1016/j.camwa.2017.06.050.  Google Scholar

[5]

F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp. doi: 10.1088/0266-5611/29/10/104014.  Google Scholar

[6]

F. CakoniS. Moskow and S. Rome, The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions, Inverse Probl. Imaging, 9 (2015), 725-748.  doi: 10.3934/ipi.2015.9.725.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138375.  Google Scholar

[8]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, C. R. Math. Acad. Sci. Paris, 354 (2016), 377-382.  doi: 10.1016/j.crma.2016.01.015.  Google Scholar

[9]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp. doi: 10.1088/0266-5611/29/10/104011.  Google Scholar

[10]

P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[11]

S. Moskow, Nonlinear eigenvalue approximation for compact operators, J. Math. Phys., 56 (2015), 113512, 11pp. doi: 10.1063/1.4936304.  Google Scholar

[12]

J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725.  doi: 10.1090/S0025-5718-1975-0383117-3.  Google Scholar

[13]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectr. Theory, 7 (2017), 1-31.  doi: 10.4171/JST/154.  Google Scholar

[14]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[15]

L. Robbiano, Counting function for interior transmission eigenvalues, Math. Control Relat. Fields, 6 (2016), 167-183.  doi: 10.3934/mcrf.2016.6.167.  Google Scholar

[16]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.  Google Scholar

show all references

References:
[1]

F. CakoniD. Colton and H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Paris, 348 (2010), 379-383.  doi: 10.1016/j.crma.2010.02.003.  Google Scholar

[2]

F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, vol. 88 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016. doi: 10.1137/1.9781611974461.ch1.  Google Scholar

[3]

F. CakoniD. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42 (2010), 237-255.  doi: 10.1137/090769338.  Google Scholar

[4]

F. CakoniH. Harris and S. Moskow, The imaging of small perturbations in an anisotropic media, Computers and Mathematics with Applications, 74 (2017), 2769-2783.  doi: 10.1016/j.camwa.2017.06.050.  Google Scholar

[5]

F. Cakoni and S. Moskow, Asymptotic expansions for transmission eigenvalues for media with small inhomogeneities, Inverse Problems, 29 (2013), 104014, 18pp. doi: 10.1088/0266-5611/29/10/104014.  Google Scholar

[6]

F. CakoniS. Moskow and S. Rome, The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions, Inverse Probl. Imaging, 9 (2015), 725-748.  doi: 10.3934/ipi.2015.9.725.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 2005. doi: 10.1007/b138375.  Google Scholar

[8]

A. Kirsch, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, C. R. Math. Acad. Sci. Paris, 354 (2016), 377-382.  doi: 10.1016/j.crma.2016.01.015.  Google Scholar

[9]

A. Kirsch and A. Lechleiter, The inside-outside duality for scattering problems by inhomogeneous media, Inverse Problems, 29 (2013), 104011, 21pp. doi: 10.1088/0266-5611/29/10/104011.  Google Scholar

[10]

P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. doi: 10.1093/acprof:oso/9780198508885.001.0001.  Google Scholar

[11]

S. Moskow, Nonlinear eigenvalue approximation for compact operators, J. Math. Phys., 56 (2015), 113512, 11pp. doi: 10.1063/1.4936304.  Google Scholar

[12]

J. E. Osborn, Spectral approximation for compact operators, Math. Comput., 29 (1975), 712-725.  doi: 10.1090/S0025-5718-1975-0383117-3.  Google Scholar

[13]

V. Petkov and G. Vodev, Asymptotics of the number of the interior transmission eigenvalues, J. Spectr. Theory, 7 (2017), 1-31.  doi: 10.4171/JST/154.  Google Scholar

[14]

L. Robbiano, Spectral analysis of the interior transmission eigenvalue problem, Inverse Problems, 29 (2013), 104001, 28pp. doi: 10.1088/0266-5611/29/10/104001.  Google Scholar

[15]

L. Robbiano, Counting function for interior transmission eigenvalues, Math. Control Relat. Fields, 6 (2016), 167-183.  doi: 10.3934/mcrf.2016.6.167.  Google Scholar

[16]

J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal., 44 (2012), 341-354.  doi: 10.1137/110836420.  Google Scholar

Figure 1.  Comparison of perturbed eigenvalues and corrected eigenvalues. The red circles are the perturbed transmission eigenvalues (squared) and the blue stars the corrected approximations for various values of $\epsilon$. The $x$-axis is $\log_{10}{\epsilon}$
Figure 2.  Log/log plot of the error $(\tau_\epsilon-(\tau_0+\epsilon \tau^{(1)} ))/\epsilon$
Table 1.  Parameters for Numerical Example
Domain $D$ $[-1, 1]$
Background Transmission Eigenvalue $k=\sqrt{-\tau}$7.12761
Background Coefficient $q_0$6.29
Perturbed Coefficient $q_1$24
Parameter $\lambda$50.72217
Domain $D$ $[-1, 1]$
Background Transmission Eigenvalue $k=\sqrt{-\tau}$7.12761
Background Coefficient $q_0$6.29
Perturbed Coefficient $q_1$24
Parameter $\lambda$50.72217
[1]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[4]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[5]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[8]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[9]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[10]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[20]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (88)
  • HTML views (134)
  • Cited by (0)

Other articles
by authors

[Back to Top]