
-
Previous Article
On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method
- IPI Home
- This Issue
-
Next Article
Asymptotic expansions of transmission eigenvalues for small perturbations of media with generally signed contrast
Reconstruction of a compact manifold from the scattering data of internal sources
1. | Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland |
2. | Department of computational and applied mathematics, Rice University, Houston, Texas, USA |
3. | Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK |
4. | Department of Mathematics, University of California Santa Barbara, Santa Barbara, California, USA |
Given a smooth non-trapping compact manifold with strictly convex boundary, we consider an inverse problem of reconstructing the manifold from the scattering data initiated from internal sources. These data consist of the exit directions of geodesics that are emaneted from interior points of the manifold. We show that under certain generic assumption of the metric, the scattering data measured on the boundary determine the Riemannian manifold up to isometry.
References:
[1] |
L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces, 25, Oxford University Press on Demand, 2004. |
[2] |
M. I. Belishev,
An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297 (1987), 524-527.
|
[3] |
M. I. Belishev and Y. V. Kuryiev,
To the reconstruction of a riemannian manifold via its spectral data (bc-method), Communications in Partial Differential Equations, 17 (1992), 767-804.
doi: 10.1080/03605309208820863. |
[4] |
C. B. Croke, Rigidity theorems in Riemannian geometry, in Geometric Methods in Inverse Problems and PDE Control, Springer, 137 (2004), 47-72.
doi: 10.1007/978-1-4684-9375-7_4. |
[5] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33. Springer-Verlag, New York-Heidelberg, 1976. |
[6] |
M. V. de Hoop, S. F. Holman, E. Iversen, M. Lassas and B. Ursin,
Reconstruction of a conformally euclidean metric from local boundary diffraction travel times, SIAM Journal on Mathematical Analysis, 46 (2014), 3705-3726.
doi: 10.1137/130931291. |
[7] |
M. V. de Hoop, S. F. Holman, E. Iversen, M. Lassas and B. Ursin,
Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times, Journal de Mathématiques Pures et Appliquées, 103 (2015), 830-848.
doi: 10.1016/j.matpur.2014.09.003. |
[8] |
A. Katchalov and Y. Kurylev,
Multidimensional inverse problem with incomplete boundary spectral data, Communications in Partial Differential Equations, 23 (1998), 27-95.
doi: 10.1080/03605309808821338. |
[9] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, vol. 123 of Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[10] |
I. Kupka, M. Peixoto and C. Pugh,
Focal stability of Riemann metrics, Journal fur die reine und angewandte Mathematik (Crelles Journal), 593 (2006), 31-72.
doi: 10.1515/CRELLE.2006.029. |
[11] |
Y. Kurylev, Multidimensional Gelfand inverse problem and boundary distance map, Inverse Problems Related with Geometry (ed. H. Soga), Ibaraki, 1-15. |
[12] |
Y. Kurylev, M. Lassas and G. Uhlmann,
Rigidity of broken geodesic flow and inverse problems, American Journal of Mathematics, 132 (2010), 529-562.
doi: 10.1353/ajm.0.0103. |
[13] |
M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19pp.
doi: 10.1088/0266-5611/26/8/085012. |
[14] |
M. Lassas and L. Oksanen,
Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Mathematical Journal, 163 (2014), 1071-1103.
doi: 10.1215/00127094-2649534. |
[15] |
M. Lassas and T. Saksala, Determination of a Riemannian manifold from the distance difference functions, Asian journal of mathematics (to appear), arXiv preprint arXiv: 1510.06157. |
[16] |
M. Lassas, V. Sharafutdinov and G. Uhlmann,
Semiglobal boundary rigidity for Riemannian metrics, Mathematische Annalen, 325 (2003), 767-793.
doi: 10.1007/s00208-002-0407-4. |
[17] |
J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, vol. 176, Springer-Verlag, New York, 1997.
doi: 10.1007/b98852. |
[18] |
R. Michel,
Sur la rigidité imposée par la longueur des géodésiques, Inventiones mathematicae, 65 (1981/82), 71-83.
doi: 10.1007/BF01389295. |
[19] |
T. Milne, Codomain rigidity of the Dirichlet to Neumann operator for the Riemannian wave equation. |
[20] |
L. Pestov and G. Uhlmann,
Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Annals of Mathematics, 161 (2015), 1093-1110.
doi: 10.4007/annals.2005.161.1093. |
[21] |
L. Pestov, G. Uhlmann and H. Zhou, An inverse kinematic problem with internal sources, Inverse Problems, 31 (2015), 055006, 6pp.
doi: 10.1088/0266-5611/31/5/055006. |
[22] |
V. Sharafutdinov, Ray transform on riemannian manifolds. eight lectures on integral geometry, preprint. |
[23] |
P. Stefanov,
Microlocal approach to tensor tomography and boundary and lens rigidity, Serdica Math. J, 34 (2008), 67-112.
|
[24] |
P. Stefanov and G. Uhlmann, Boundary and lens rigidity, tensor tomography and analytic microlocal analysis, in Algebraic Analysis of Differential Equations, Springer, 2008,275-293.
doi: 10.1007/978-4-431-73240-2_23. |
[25] |
P. Stefanov, G. Uhlmann and A. Vasy,
Boundary rigidity with partial data, Journal of the American Mathematical Society, 29 (2016), 299-332.
doi: 10.1090/jams/846. |
[26] |
P. Stefanov, G. Uhlmann and A. Vasy, Local and global boundary rigidity and the geodesic x-ray transform in the normal gauge, arXiv: 1702.03638. |
[27] |
P. Topalov and V. S. Matveev,
Geodesic equivalence via integrability, Geometriae Dedicata, 96 (2003), 91-115.
doi: 10.1023/A:1022166218282. |
[28] |
G. Uhlmann and H. Zhou, Journey to the Center of the Earth, arXiv: 1604.00630. |
show all references
References:
[1] |
L. Ambrosio and P. Tilli, Topics on Analysis in Metric Spaces, 25, Oxford University Press on Demand, 2004. |
[2] |
M. I. Belishev,
An approach to multidimensional inverse problems for the wave equation, Dokl. Akad. Nauk SSSR, 297 (1987), 524-527.
|
[3] |
M. I. Belishev and Y. V. Kuryiev,
To the reconstruction of a riemannian manifold via its spectral data (bc-method), Communications in Partial Differential Equations, 17 (1992), 767-804.
doi: 10.1080/03605309208820863. |
[4] |
C. B. Croke, Rigidity theorems in Riemannian geometry, in Geometric Methods in Inverse Problems and PDE Control, Springer, 137 (2004), 47-72.
doi: 10.1007/978-1-4684-9375-7_4. |
[5] |
M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, No. 33. Springer-Verlag, New York-Heidelberg, 1976. |
[6] |
M. V. de Hoop, S. F. Holman, E. Iversen, M. Lassas and B. Ursin,
Reconstruction of a conformally euclidean metric from local boundary diffraction travel times, SIAM Journal on Mathematical Analysis, 46 (2014), 3705-3726.
doi: 10.1137/130931291. |
[7] |
M. V. de Hoop, S. F. Holman, E. Iversen, M. Lassas and B. Ursin,
Recovering the isometry type of a Riemannian manifold from local boundary diffraction travel times, Journal de Mathématiques Pures et Appliquées, 103 (2015), 830-848.
doi: 10.1016/j.matpur.2014.09.003. |
[8] |
A. Katchalov and Y. Kurylev,
Multidimensional inverse problem with incomplete boundary spectral data, Communications in Partial Differential Equations, 23 (1998), 27-95.
doi: 10.1080/03605309808821338. |
[9] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, vol. 123 of Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[10] |
I. Kupka, M. Peixoto and C. Pugh,
Focal stability of Riemann metrics, Journal fur die reine und angewandte Mathematik (Crelles Journal), 593 (2006), 31-72.
doi: 10.1515/CRELLE.2006.029. |
[11] |
Y. Kurylev, Multidimensional Gelfand inverse problem and boundary distance map, Inverse Problems Related with Geometry (ed. H. Soga), Ibaraki, 1-15. |
[12] |
Y. Kurylev, M. Lassas and G. Uhlmann,
Rigidity of broken geodesic flow and inverse problems, American Journal of Mathematics, 132 (2010), 529-562.
doi: 10.1353/ajm.0.0103. |
[13] |
M. Lassas and L. Oksanen, An inverse problem for a wave equation with sources and observations on disjoint sets, Inverse Problems, 26 (2010), 085012, 19pp.
doi: 10.1088/0266-5611/26/8/085012. |
[14] |
M. Lassas and L. Oksanen,
Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets, Duke Mathematical Journal, 163 (2014), 1071-1103.
doi: 10.1215/00127094-2649534. |
[15] |
M. Lassas and T. Saksala, Determination of a Riemannian manifold from the distance difference functions, Asian journal of mathematics (to appear), arXiv preprint arXiv: 1510.06157. |
[16] |
M. Lassas, V. Sharafutdinov and G. Uhlmann,
Semiglobal boundary rigidity for Riemannian metrics, Mathematische Annalen, 325 (2003), 767-793.
doi: 10.1007/s00208-002-0407-4. |
[17] |
J. M. Lee, Riemannian Manifolds: An Introduction to Curvature, vol. 176, Springer-Verlag, New York, 1997.
doi: 10.1007/b98852. |
[18] |
R. Michel,
Sur la rigidité imposée par la longueur des géodésiques, Inventiones mathematicae, 65 (1981/82), 71-83.
doi: 10.1007/BF01389295. |
[19] |
T. Milne, Codomain rigidity of the Dirichlet to Neumann operator for the Riemannian wave equation. |
[20] |
L. Pestov and G. Uhlmann,
Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Annals of Mathematics, 161 (2015), 1093-1110.
doi: 10.4007/annals.2005.161.1093. |
[21] |
L. Pestov, G. Uhlmann and H. Zhou, An inverse kinematic problem with internal sources, Inverse Problems, 31 (2015), 055006, 6pp.
doi: 10.1088/0266-5611/31/5/055006. |
[22] |
V. Sharafutdinov, Ray transform on riemannian manifolds. eight lectures on integral geometry, preprint. |
[23] |
P. Stefanov,
Microlocal approach to tensor tomography and boundary and lens rigidity, Serdica Math. J, 34 (2008), 67-112.
|
[24] |
P. Stefanov and G. Uhlmann, Boundary and lens rigidity, tensor tomography and analytic microlocal analysis, in Algebraic Analysis of Differential Equations, Springer, 2008,275-293.
doi: 10.1007/978-4-431-73240-2_23. |
[25] |
P. Stefanov, G. Uhlmann and A. Vasy,
Boundary rigidity with partial data, Journal of the American Mathematical Society, 29 (2016), 299-332.
doi: 10.1090/jams/846. |
[26] |
P. Stefanov, G. Uhlmann and A. Vasy, Local and global boundary rigidity and the geodesic x-ray transform in the normal gauge, arXiv: 1702.03638. |
[27] |
P. Topalov and V. S. Matveev,
Geodesic equivalence via integrability, Geometriae Dedicata, 96 (2003), 91-115.
doi: 10.1023/A:1022166218282. |
[28] |
G. Uhlmann and H. Zhou, Journey to the Center of the Earth, arXiv: 1604.00630. |






[1] |
Ella Pavlechko, Teemu Saksala. Uniqueness of the partial travel time representation of a compact Riemannian manifold with strictly convex boundary. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022028 |
[2] |
Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015 |
[3] |
Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098 |
[4] |
Alexander Nabutovsky and Regina Rotman. Lengths of geodesics between two points on a Riemannian manifold. Electronic Research Announcements, 2007, 13: 13-20. |
[5] |
Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems and Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034 |
[6] |
Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks and Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021 |
[7] |
Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799 |
[8] |
Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173 |
[9] |
Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 |
[10] |
Zhongkai Guo. Invariant foliations for stochastic partial differential equations with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5203-5219. doi: 10.3934/dcds.2015.35.5203 |
[11] |
Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609 |
[12] |
Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5337-5354. doi: 10.3934/dcdsb.2019061 |
[13] |
Margarida Camarinha, Fátima Silva Leite, Peter Crouch. Riemannian cubics close to geodesics at the boundaries. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2022003 |
[14] |
Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015 |
[15] |
Boya Liu. Stability estimates in a partial data inverse boundary value problem for biharmonic operators at high frequencies. Inverse Problems and Imaging, 2020, 14 (5) : 783-796. doi: 10.3934/ipi.2020036 |
[16] |
Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115 |
[17] |
Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265 |
[18] |
Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967 |
[19] |
Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993 |
[20] |
Alice Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. Journal of Geometric Mechanics, 2017, 9 (2) : 131-156. doi: 10.3934/jgm.2017005 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]